NOTES

Potential Antitubercular Agents, Part I: 4-Thiazolidinone Derivatives

ANJANI SOLANKEE*, KISHOR KAPADIA and J.M. TUREL

Department of Chemistry

B.K.M. Science College, Valsad-396 001, India

4-Thiazolidinones have been prepared by condensing α -bromoadipic acid with different thioureas. The 4-thioazolidinones have been tested for antitubercular activity using $H_{37}R_V$ strain of bacteria

4-Thiazolidinones have been found to exhibit antitubercular activity¹. The nucleus is also active as hypnotic², anti convulsant³ and antifungal⁴. Phenyl urea derivatives show central myorelexant effect⁵, motor-incoordinating activity, antieorazol⁶ and anticonvulsive⁷⁻¹⁰ activities.

For the preparation of 2-phenyl-amino-5-(ω -carboxy propyl)-4-thiazolidinones(VI), the thioureas have been prepared with different aromatic and aliphatic hydrochlorides and then condensed with α -bromo-adipic acid in ethanol i.p.o. pyridine as catalyst. When tested, these compounds showed antitubercular activity.

COOH
$$COOC_{2}H_{5} COOC_{2}H_{5} | COOC_{2}H_{5} |$$

$$COOH$$

$$C_{2}H_{5}OH | C_{2}H_{5}OH | COC_{2}H_{5} | COC_{2}H_{5} |$$

$$COOH | COOC_{2}H_{5} | COC_{2}H_{5} | COOH |$$

$$COOC_{2}H_{5} | CH_{2}COOH | COOH |$$

$$III | COOH | IV$$

$$R_{1}-NH-C-NH-R_{2} | Pyridine | COCC_{2}NH |$$

$$V | COOC_{2}COOC_{2}COOC_{2}COOC_{2}COOC_{2}OOC_{$$

All melting points are uncorrected. IR spectra of the title compounds were taken on a Perkin Elmer 237 grating spectrophotometer. The strong bands are at 1750 cm⁻¹, 1640 cm⁻¹ for thiazolidinone ring-system.

Preparation of Diester of Adipic Acid¹¹ (II), Monoester of Adipic Acid¹² (III), α -Bromoadipic Acid¹³ (IV) and Thiourea (V)

To the solution of aryl amine hydrochloride (0.1 M) in ethanol (25 ml) was

added potassium thiocyanate (0.1 M). The contents were heated to reflux for 4 hrs, filtered hot and worked out to get the corresponding thiourea.

Preparation of 2-Phenyl-Imino-5-(ω-Carboxy Propyl) -4-Thiazolidinones(VI)

Thiourea (0.04 M), absolute alcohol (50 ml), α-bromo-adipic acid (0.04 M) and pyridine (0.025 M, AR grade) were heated to reflux for 4 hrs. The solvent was evaporated and the residue was treated with sodium bicarbonate solution (50 ml) and filtered. The filtrate was adjusted to pH 2 to 2.5 by hydrochloric acid AR grade. The thiazolidinones were crystallised from ethanol.

Antitubercular Activity

Total fifteen compounds were tested for antitubercular activity by using $H_{17}R_{\nu}$ strain of bacteria.

Sr. No.	R	Activity in micrograms per ml
1.	-H	Inactive
2.	-C ₆ H ₅	Inactive
3.	-o-C ₆ H ₄ Cl	200
4.	-m-C ₆ H ₄ Cl	100
5.	-p-C ₆ H ₄ Cl	100
6.	-o-C ₆ H ₄ CH ₃	Inactive
7.	-m-C ₆ H ₄ CH ₃	Inactive
8.	-p-C ₆ H ₄ CH ₃	Inactive
9.	-m-C ₆ H ₄ OCH ₃	Inactive
10.	-p-C ₆ H ₄ OCH ₃	Inactive
11.	-p-C ₆ H ₄ OC ₃ H ₇	20
12.	-p-C ₆ H ₄ OC ₃ H ₇	10
13.	-p-C ₆ H ₄ OC ₄ H ₉	10
14.	-1-C ₁₀ H ₇	40
15.	-2-C ₁₀ H ₇	10

Standard drugs

Sr. No.	Name	Minimum inhibitory conc. in micrograms per ml
1.	INH	0.04
2.	Streptomycin	1.00

REFERENCES

 N.M. Furkevich, L.Y. Ladnaya, I.V. Pleshner and O.L. Grom, Khim. Issled. Farm., 64, (1970), Chem. Abstr. 76, 34154n, (1972).

- 2. W.J. Doran and H.A. Shonle, J. Org. Chem., 3, 193 (1938).
- 3. H.D. Troutmann and L.M. Long, J. Am. Chem. Soc., 70, 3436 (1948).
- 4. J. Kinugawa and K. Nagase, Japanese Patent, 8542 (65); Chem. Abstr., 63, 5653 (1965).
- 5. V. Georgiev, Compt. Rend. Acad. Bulgare Sci., 17, 1133 (1964); Chem. Abstr., 62, 9650 (1965).
- 6. V. Georgiev and O. Vassileva, Compt. Rend. Acad. Bulgare Sci., 17, 1129 (1964); Chem. Abstr., 63, 2242h (1965).
- 7. V. Georgiev, Compt. Rend. Acad. Bulgare Sci., 18, 883 (1965); Chem. Abstr., 64, 14808 (1966).
- , Compt. Rend. Acad. Bulgare Sci., 18, 1059 (1965); Chem. Abstr., 64, 4101f 8.
- _, Izv. Inst. Fiziol., Bulgare Akad. Nauk., 9, 115 (1965); Chem. Abstr., 65, 1256
- _, Izv. Inst. Fiziol, Bulgare Akad. Nauk., 10, 121 (1966); Chem. Abstr., 67, 31328a 10. (1967).
- 11. V.M. Micovic, Org. Syn. Collective Vol. II, 264 (1963), John Wiley & Sons, Inc., London.
- 12. V.M. Tursin, L.G. Chebotareva and A.S. Sadkov, Med. Prom. S.S.S.R., 16, 22 (1962).
- 13. L. Otzet, J. Pascula and J. Vaider, An. Real Soc., Espan. Fis Quim. Ser. B, 63, 479 (1967).

(Received: 15 October 1992; Accepted: 15 May 1993)

AJC-620