Molar Sound Velocity and Molar Compressibility of Castor Oil at Elevated Temperature and Pressure

M.C. SAXENA* and SHIPRA SIRCAR

Chemical Laboratories

K.S. Saket Post-Graduate College

Faizabad-224 001 India

Molar sound velocity and molar compressibility have been evaluated in castor oil at wide range of temperature and pressure. Their relations with temperature and pressure have been discussed in the light of Rao and Wada Rule.

INTRODUCTION

In continuation of our earlier work^{1,2}, we report in the present paper the calculated value of Rao and Wada constant in case of castor oil, at wide range of temperature and pressure, using sound velocity and density data of Timme³. It is found that both sound velocity (Rao constant) R and molar compressibility (Wada constant) W vary with temperature and pressure, showing deviation from Rao and Wada rule in castor oil.

Theoretical

Molar sound velocity and molar compressibility are of much use in studying the physico-chemical behaviour of liquid and gaseous state of matter. Rao^{4,5} has given an empirical relation between temperature coefficient, sound velocity and volume expansion coefficient for many organic liquids, which can be given as:

$$\frac{1}{c} \left(\frac{\partial c}{\partial T} \right)_{p} = -K \frac{1}{V} \left(\frac{\partial v}{\partial T} \right)_{p} \tag{1}$$

$$\frac{\partial (\rho_n c)}{\partial (\rho_n V)_p} = \frac{V}{c} \left(\frac{\partial c}{\partial V} \right)_p = -\frac{\rho}{c} \left(\frac{\partial c}{\partial \rho} \right)_p = -K \tag{2}$$

On combining equations (1) and (2) we get

$$Vc^{1/k} = R \tag{3}$$

where c is the velocity of sound in liquid, T is temperature, V is molar volume, $\rho = M/V$ and P is pressure. Rao has used the value of K as 3 after studying a number of liquids.

^{*}Madhu Ban, 368–F, Balla Hata, Opposite Sona Biscuit Company, Hospital Road, Faizabad–224 001, India.

On putting value of K as 3 in the equation (3), one obtains,

$$V = Vc^{1/3}$$

a constant for a particular liquid which is independent of temperature. In a similar way Kornvel and Litovitz⁶ gave the following expression:

$$\frac{1}{c} \left(\frac{\partial C}{\partial \rho} \right)_{T} = -K' \frac{1}{V} \left(\frac{\partial V}{\partial \rho} \right)_{T}$$
 (4)

or

$$\frac{\partial (\rho_{n}c)}{\partial (\rho_{n}V)_{T}} = \frac{V}{c} \left(\frac{\partial c}{\partial V}\right)_{T} = \frac{\rho}{c} \left(\frac{\partial c}{\partial \rho}\right)_{T} = -K'$$
 (5)

where K was also taken as 3. These workers obtained

$$R' = Vc^{1/3}$$
 (6)

again a constant R

Several other workers⁷⁻¹⁴ also worked on these relations and principles, theoratically. Experimental work has also been done in this field by several workers¹⁵⁻¹⁷ to find out details. Rao and Rao¹⁸ have also worked on this rule, but the results obtained gave no support to the Rao rule; instead, they supported Kornvel and Lito-vitz rule.

According to Rao and Rao

$$K' = \frac{n+m+3}{6}$$

It was found that K and K' depend upon temperature and pressure, and vary with temperature and pressure and their difference can be given by the relation

$$K' - K = \frac{1}{\beta_T} \cdot \frac{1}{c} \left(\frac{\partial c}{\partial \rho} \right)_v \tag{7}$$

where β_T is isothermal compressibility. Wada¹⁹ gave a similar expression for adiabatic compressibility as

$$\frac{\frac{1}{\beta_{S}} \left(\frac{\partial B_{S}}{\partial T} \right)_{p}}{\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p}} = n_{1}$$
 (8)

and

$$\frac{\frac{1}{B_{S}} \left(\frac{\partial B_{S}}{\partial p} \right)_{T}}{\frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{T}} = n_{2}$$
 (9)

where n_1 and n_2 are constants, the values of which for almost all organic liquids are 6.5 and 7.3. According to Wada the values for n_1 and n_2 in above equations are equal and it may be kept as 7. Therefore from above equation we can get

$$V\beta_s^{-1/7} = W \tag{10}$$

where W is known as molar compressibility which is independant of temperature and pressure.

RESULTS AND DISCUSSION

Several workers²⁰⁻²⁵ have made studies in which deviations from Rao, Kornvel, Litovitz and Wada rule have been observed in liquids and liquified gases. In the present paper values of molar sound velocity (Rao constant) R and the molar compressibility (Wada constant) W for castor oil have been calculated using equations (6) and (10) at different temperatures and pressures. The necessary data required for calculations were taken from the literature^{3,26}. The results obtained are reported in Table 1.

TABLE 1 MOLAR SOUND VELOCITY (R) AND MOLAR COMPRESSIBILITY (W) FOR CASTOR OIL.

Pressure	Velocity of sound m/s	ρ gm/cc	R	w
(Ref-3)	(Ref-3)	(Ref-26)	(Eqn-6)	(Eqn-10)
		T = 273.15 K		
Atmosphere	1570	0.9737	3604.80	2527.83
70 MPa	1791	1.0013	3662.75	2562.63
80 MPa	1819	1.0046	3668.73	2566.22
90 MPa	1846	1.0078	3675.08	2570.02
100 MPa	1871	1.0110	3679.91	2572.92
110 MPa	1896	1.0141	3684.93	2575.93
		T = 278.15 K		•
Atmosphere	1553	0.9703	3604.33	2527.56
70 MPa	1776	0.9987	3661.10	2561.64
80 MPa	1804	1.0021	3667.76	2565.63
90 MPa	1831	1.0054	3673.85	2569.29
100 MPa	1857	1.0087	3679.08	2572.42
110 MPa	1882	1.0118	3684.19	2575.49
		T = 283.15 K		
Atmosphere	1537	0.9662	3607.15	2529.25
70 MPa	1761	0.9961	3660.30	2561.15
80 MPa	1789	0.9997	3666.32	2564.77
90 MPa	1816	1.0030	3672.56	2568.52
100 MPa	1842	1.0064	3677.54	2571.49
110 MPa	1868	1.0096	3683.05	2574.79
		T = 288.15 K		
Atmosphere	1521	0.9636	3604.29	2527.53
70 MPa	1746	0.9932	3660.52	2561.29
80 MPa	1774	0.9951	3672.96	2568.75
90 MPa	1802	1.0005	3672.25	2568.33
100 MPa	1828	1.0039	3677.33	2571.37
110 MPa	1854	1.0073	3682.21	2574.29

Pressure	Velocity of sound m/s	ρ gm/cc	R	W.
(Ref-3)	(Ref-3)	(Ref-26)	(Eqn-6)	(Eqn-10)
		T = 293.15 K		
Atmosphere	1505	0.9602	3604.31	2527.54
70 MPa	1731	0.9907	3659.24	2560.52
80 MPa	1760	0.9944	3665.85	2564.49
90 MPa	1788	0.9981	3671.53	2567.89
100 MPa	1814	1.0016	3676.34	2570.78
110 MPa	1840	1.0050	3681.33	2573.76
		T = 298.15 K		
Atmosphere	1490	0.9572	3603.58	2527.10
70 M Pa	1717	0.9881	3658.93	2560.34
80 MPa	1746	0.9917	3666.06	2564.62
90 MPa	1774	0.9956	3671.12	2567.65
100 MPa	1801	0.9997	3674.51	2569.68
110 MPa	1827	1.0032	3679.23	2572.51
		T = 303.15 K		
Atmosphere	1474	0.9540	3602.67	2526.56
70 MPa	1704	0.9857	3658.56	2560.12
80 MPa	1732	0.9892	3665.48	2564.27
90 MPa	1761	0.9933	3670.61	2567.34
100 MPa	1788	0.9970	3675.58	2570.32
110 MP a	1814	1.0004	3680.75	2573.42
		T = 308.15 K		
Atmosphere	1460	0.9504	3604.83	2527.86
70 MPa	1690	0.9831	3658.16	2559.88
80 MPa	1719	0.0866	3665.92	2564.53
90 MPa	1747	0.9909	3669.72	2566.81
100 MPa	1775	0.9946	3675.49	2570.27
110 MPa	1801	0.9984	3679.30	2572.55
		T = 313.15 K		
Atmosphere	1445	0.9473	3604.20	2527.48
70 MPa	1677	0.9806	3658.06	2559.82
80 MPa	1706	0.9849	3666.32	2564.77
90 MPa	1735	0.9885	3670.19	2567.09
100 MPa	1762	0.9923	3675.00	2569.98
110 M Pa	1789	0.9959	3680.32	2573.16

Table 1 consists of values of molar sound velocity and molar compressibility of castor oil ranging from 273.15 K to 313.15 K at various pressures from atmospheric to 110 MPa. The values of R and W are given in columns four and five.

A perusal of column four and five reveals that there is a regular increase in the values of R and W with increase of pressure. Temperature has no marked effect on the values of R and W, as observed by Rao and Wada.

The molar sound velocity and molar compressibility are pressure dependent

AJC-610

values. Their values in case of castor oil increase with pressure at constant temperature. Their values are interrelated with the values of sound velocity and density with increase of pressure.

Finally it may be concluded that molar sound velocity R and molar compressibility W are pressure dependent parameters and the present study shows that Rao and Wada rule are not applicable in case of castor oil at elevated pressure.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. M.P. Gupta, Head, Department of Chemistry and Shri Y.R. Tripathi, Principal, K.S. Saket P.G. College, Faizabad for providing library facility in the college.

REFERENCES

- 1. J.D. Pandey, P. Dubey and M.C. Saxena, Acustica, 48, 277 (1981).
- 2. M.C. Saxena, Asian J. Chem. 5, 979 (1993).
- 3. R.W. Timme, J. Acoust. Soc. Amer., 52, 989 (1972).
- 4. N.R. Rao, Indian J. Phys., 14, 109 (1940).
- 5. N.R. Rao, J. Chem. Phys., 9, 682 (1941).
- 6. E.N. Kornvel and T.A. Litovitz, J. Acoust Soc., 27, 547 (1955).
- 7. O. Nomoto, J. Phys. Soc. (Japan), 10, 31, 11, 1145 (1955).
- 8. N.R. Rao, Indian J. Pure Appl. Phys., 3, 309 (1956).
- 9. S.S. Mathur, P.N. Gupta and S.S. Sinha, J. Phys., A4, 434 (1971).
- 10. E. Soezkie Wies, J. Phys. A5, 31, (1972).
- 11. O.N. Singh, N. Das, & N.C. Varshneya, J. Phys., A5, 36 (1972).
- 12. Schunyer, J. Polymer Sci., 36, 475 (1959).
- 13. K.M. Swami and P.S. Swami, J. Acoust. Soc. India, 3, 2330 (1974).
- 14. R.A. Aziz, D.S. Browman and C.C. Lin, Can. J. Phys., 50, 546 (1972).
- 15. R.J. Legman, D.R.J.R. McMulan and W.E. Woolf, J. Chem., Phys., 17, 369 (1949).
- 16. P.R.K.L. Padmini and V. Ramchandra, Trans. Farad. Soc., 58, 650 (1962).
- 17. P.R.K.L. Padmini, Suka Rao and V.R. Rao, Trans. Farad. Soc. 56, 1404 (1960).
- 18. R.V.G. Rao and B.S.M. Rao. Trans. Farad. Soc., 62, 2704 (1966).
- 19. Y. Wada, J. Phys. Soc. Japan, 4, 280 (1949).
- 20. V.F. Nazdrev, Application of Ultrasonics in Molecular Physics, Garden and Birrach, New York (1963).
- 21. Wama Van Dael, Van Ittenbeck, Physics of High Pressure and Condensed Phase, John Wiley and Sons, Inc., New York, P. 350 (1965).
- 22. K. Samal and A.N. Patnaik, Indian. J. Pure Appl. Phys., 11, 566 (1973).
- 23. S. Rajgopalan, J. Phys. Soc. Jap., 25, 1204 (1968).
- 24. K.M. Swami, and P.S. Swami, J. Acoust. Soc. India, 3, 23, 30 (1974).
- 25. V. Tiwari, Acustica, 40, 33 (1978).
- 26. J.D. Pandey, R.L. Mishra and T. Bhatt, Acustica, 38, 83 (1977).