Synthesis of 1,2,4-trihalophenothiazin-3-ones and Their Conversion into (1,4)-Benzothiazino-(2,3-b)-Phenothiazines

K.G. OJHA*, NEHA MATHUR, MAHAVEER KAWADIYA and M. TANWAR P.G. Department of Chemistry S.D. Government College, Beawar-305 901, India

1,2,4-Trihalophenothiazin-3-ones were prepared by condensing 2-amino benzenthiols with chloranil/bromanil in 1:1 molar ratio. Compounds were further condensed with the same or different 2-aminobenzenthiol which afforded (1,4)-benzothiazino-(2,3-b)-phenothiazines.

INTRODUCTION

Phenothiazinone and phenoxazine derivatives containing aminoquinone system have been studied for biological and pharmaceutical activities and to obtain useful pigments¹⁻³. Triphenodithiazines form an important class of compounds among the dyes of thiazine series⁴. Dyes of this series are useful for dying cotton, cellulose materials, rubber, paper and plastics in various shades⁵⁻⁸. In continuation of our interest in the synthesis and usages of these compounds, we wish to report the synthesis of some new phenothiazinone (III) and (1,4)-benzothiazino-(2,3-b)phenothiazine derivatives (V).

RESULTS AND DISCUSSION

In the present work 1,2,4-trihalophenothiazin-3-ones (III) were prepared by the reaction of substituted 2-aminobenzenthiols (I) and chloranil/bromanil (II). The compound (III) was further condensed with same or different 2-aminobenzenthiol (IV) which afforded symmetrical substituted (1,4)-benzothiazino-(2,3-b)phenothiazines (Vi, j) and unsymmetrical (1,4)-benzothiazino-(2,3-b) phenothiazines (V a-h, Scheme 1). Symmetrical triphenodithiazines (V i, j) were also prepared by an alternative single-step procedure. In this method chloranil/ bromanil was condensed with substituted 2-aminobenzenthiol in a molar ratio of 1:2 (Scheme II). The products prepared by single-step method were identical (TLC, IR and mixed melting point) with those obtained by two-step reaction. Unsymmetrical substituted triphenodiathiazines (V a-h) were also synthesised using another route (Scheme III). In this procedure substituted 2-aminobenzenthiols (IV) were condensed with chloranil/bromanil (II) to get substituted 1,2,4-trihalophenothiazin-3-ones (III) which on further condensation with (I) provided compounds (V). The products (V) prepared by alternative route (Scheme III) were identical with those prepared by Scheme I.

IR spectra: 1,2,4-Trihalophenothiazin-3-ones exhibit strong band in the

Present address: B-6, Mayoor Colony-B, Alwar Gate, Ajmer-305 001, India.

124 Ojha et al. Asian J. Chem.

$$\begin{array}{c|c}
R & NH_2 \\
R_1 & SH \\
\end{array} + \begin{array}{c}
N & X \\
\end{array} + \begin{array}{c}$$

Scheme I

Scheme III

region 1675–1620 cm⁻¹ due to C=C stretching vibration. In chloro derivatives bands in the region 765–745 cm⁻¹ are due to (C—Cl) stretching vibrations. Two sharp peaks (1560–1535 cm⁻¹ and 1341–1310 cm⁻¹) are obtained in nitro derivatives due to symmetric and unsymmetric vibration of NO₂ group. The bands in the region 1600–1200 cm⁻¹ can be assigned to (C—C) and (C—N) ring vibrations. Similarly 1,4-benzothiazeno-(2,3-b)-phenothiazines show a number of sharp and medium peaks in the region 1200–1625 cm⁻¹ which can be assigned to (C—C) and (C—N) ring vibration and two sharp bands in the regions 1565–1520 cm⁻¹ and 1360–1315 cm⁻¹ are due to NO₂ groups.

EXPERIMENTAL

Melting points of all the compounds were determined in open capillaries and are uncorrected. IR spectra were recorded on Perkin-Elmer model 781 in

KBr/nujol. The purity of the compounds was checked on thin layers of silica-gel in various nonaqueous solvent systems. Bromanil was prepared by the method described by Torry and Hunter⁹. Substituted 2-aminobenzenthiols were prepared by the method reported in literature 10-12.

Preparation of substituted 1,2,4-trihalophenothiazin-3-ones (III a-i)

To a suspension of chloranil/bromanil (II, 0.01 mol) in ethanol (20 mL) was added a solution of substituted 2-aminobenzenthiol (I, 0.01 mol) in ethanol (10 mL) and anhydrous sodium acetate (0.05 mol). The reaction mixture was refluxed for 6 h. After cooling to room temperature the solid separated was filtered, washed with water and finally with 30% ethanol. The products were recrystallised from benzene. Physical data are given in Table 1.

S. No.	C	Compound	s	m.p.	Yield %	Molecular formula	N* % Found (Calcd.)
	R	R_1	X	(°C)			
a	Н	Н	Cl	104	61	C ₁₂ H ₄ NSOCl ₃	4.40(4.42)
b	Н	Н	Br	137	55	C ₁₂ H ₄ NSOBr ₃	3.08(3.11)
c	Н	Cl	Cl	141	50	C ₁₂ H ₃ NSOCl ₄	3.86(3.98)
d	Н	Cl	Br	147	48	C ₁₂ H ₃ NSOBr ₃ Cl	2.85(2.88)
e	CH ₃	NO_2	Cl	116	53	$C_{13}H_5N_2SO_3Cl_3$	7.42(7.45)
f	CH_3	NO_2	Br	171(d)	49	$C_{13}H_5N_2SO_3Br_3$	5.45(5.50)
g	NO_2	CH_3	Cl	110	55	$C_{13}H_5N_2SO_3Cl_3$	7.42(7.45)
h	NO_2	CH_3	Br	166	50	$C_{13}H_5N_2SO_3Br_3$	5.47(5.50)
i	OCH ₃	NO_2	Cl	168	50	$C_{13}H_5N_2SO_4Cl_3$	7.14(7.15)
j	OCH_3	NO_2	Br	165	55	$C_{13}H_5N_2SO_4Br_3$	6.30(6.33)

TABLE 1 PHYSICAL DATA OF 1.2.4-TRIHALOPHENOTHIAZIN-3-ONES (III. a-i)

Preparation of 1,4-Benzothiazino-(2,3-b)-phenothiazines (V a-j)

Method A: To a mixture of 1,2,4-trihalophenothiazin-3-ones (III 0.01 mol) and substituted 2-aminobenzenthiol (I, 0.01 mol in ethanol (20 mL) was added anhydrous sodium acetate (0.05 mol). The reaction mixture was refluxed for 6 h, cooled to room temperature and the solid separated out was filtered, washed with water followed by 30% ethanol and recrystallised from benzene. Physical data are given in Table 2.

Method B: To a stirred suspension of chloranil/bromanil (0.01 mol) and 2-aminobenzenthiol (0.02 mol) in ethanol (20 mL) was added anhydrous sodium acetate (0.01 mol). The mixture was refluxed for 6 h, cooled to room temperature and the solid separated out was filtered, washed with water followed by 30% ethanol and recrystallised from benzene. Physical data are given in Table 2.

^{*}All the compounds gave the satisfactory C, H and S analyses.

126 Ojha et al. Asian J. Chem.

S. No.	Compounds					(00)	Yield		N* %
	R	R ₁	R ₂	R ₃	Х	m.p. (°C)	(%)	Molecular formula	Found (Calcd.)
a	Н	Н	CH ₃	NO ₂	Cl	194	59	C ₁₉ H ₉ N ₃ S ₂ O ₂ Cl ₂	9.39(9.41)
b	Н	H	CH ₃	NO_2	Br	199	57	$C_{19}H_9N_3S_2O_2Br_2$	7.82(7.85)
c	H	Cl	CH ₃	NO_2	Cl	229	51	$C_{19}H_8N_3S_2O_2Cl_3$	8.72(8.74)
d	Н	Ci	CH ₃	NO_2	Br	240	54	$C_{19}H_8N_3S_2O_2Br_2Cl$	7.36(7.37)
e	CH ₃	NO ₂	CH ₃	NO ₂	Cl	183(d)	49	$C_{20}H_{10}N_4S_2O_4Cl_2$	11.06(11.08)
f	CH ₃	NO ₂	CH ₃	NO_2	Br	213	55	$C_{20}H_{10}N_4S_2O_4Br_2$	9.40(9.42)
g	CH ₃	NO ₂	NO_2	CH_3	Cl	186(d)	48	$C_{20}H_{10}N_4S_2O_4Cl_2$	11.05(11.08)
h	CH ₃	NO_2	NO_2	CH_3	Br	216	56	$C_{20}H_{10}N_4S_2O_4Br_2$	9.40(9.42)
i	CH ₃	NO ₂	OCH ₃	NO ₂	Cl	218	55	$C_{20}H_{10}N_4S_2O_5Cl_2$	10.72(10.74)
i	CH ₃	NO ₂	OCH ₃	NO_2	Br	223	52	C ₂₀ H ₁₀ N ₄ S ₂ O ₅ Br ₂	9.09(9.10)

TABLE 2
PHYSICAL DATA OF SOME SUBSTITUTED TRIPHENODITHIAZINES (V, a-j)

ACKNOWLEDGEMENTS

We are thankful to the Principal and Head of the Department for providing necessary research facilities and encouragement. Thanks are due to UGC, New Delhi for providing research grant.

REFERENCES

- 1. U. Hollstein, Chem. Rev., 74, 625 (1974).
- 2. N. Igbal, T. Kando, T. Kato and Y. Ueno, *Pharmazie*, 47, 554 (1993).
- 3. N.L. Agarwal and W. Schafer, J. Org. Chem., 45, 5144 (1980).
- K. Venkataraman, The Chemistry of Synthetic Dyes, Vol. II, Academic Press, New York, p. 761 (1952).
- 5. T. Namikata and M. Ozak, Jap. Pat. 0431, 487 (1990); Chem Abstr., 126, 266289 (1992).
- M. Lancas, R. Marcia, J. Leonardo and E. Carrilho, J. High Resolt Chromatogr., 14, 633 (1991); Chem. Abstr., 115, 283431 (1991).
- W. Bair, C. Andrews, L. Tuttle and D. Mckee, J. Med. Chem., 34, 1983 (1991); Chem. Abstr., 115, 49044 (1991).
- F. Andreani, P. Costa and E. Maurizia, J. Heterocycl. Chem., 28, 295 (1991); Chem. Abstr., 115, 71511 (1991).
- 9. H.A. Torry and W.H. Hunter, J. Am. Chem. Soc., 34, 702 (1912).
- 10. K.G. Ojha, P. Adwani and Neha Mathur, Die Pharmazie, 46, 883 (1991).
- 11. R.R. Gupta, K.G. Ojha, G.S. Kalwania and M. Kumar, Heterocycles, 14, 1145 (1980).
- 12. K.G. Ojha, Neha Mathur and P. Adwani; Die Pharmazie, 47, 114 (1992).

^{*}All the compounds gave the satisfactory C, H and S analysis.