Synthesis and Spectral Studies of ZrO(II) Complexes with Aroylhydrazones

S.D. ANGADI* and V.H. KULKARNI Department of Chemistry, Gulbarga University Gulbarga-585 106, India

Complexes of zironium(IV) with aroylhydrazones have been prepared in methanolic medium. The complexes have the stoichiometry of the type ZrOCl₂L₂. These are yellow to orange amorphous substances and are soluble in methanol, ethanol and DMF. The spectral data suggest that the oxygen of carbonyl group and nitrogen of azomethine group are involved in coordination. These ligands behaves as bidentates and a coordination number of seven has been proposed for zirconium in these complexes.

INTRODUCTION

The hydrazides have been successfully tried for the complexation and have been shown to coordinate through the C=O and the terminal —NH groups 1-6. The hydrazones containing C=O and C=N coordinating sites are the reaction products of hydrazides with aldehydes or ketones 7. The *ortho* hydroxy aldehydes or ketones yield the bases containing the active group —OH in addition to the C=O and C=N coordinating groups. The previous examples manifest that these bases show varied behaviour depending the involvement of active and coordination sites 8-11. The present work describes the synthesis and spectral properties of ZrO(II) complexes with the following hydrazones (Structures I-VI).

EXPERIMENTAL

ZrOCl₂·8H₂O was of Fluka made, benzoyl hydrazide, various substituted salicyloyldehydes and the aroyl hydrazones were prepared according to the literature procedure.

Preparation of the Complexes

A methanolic solution of ZrOCl₂·8H₂O (0.01 mol) and that of the ligands (0.02 mol) in the same solvent were mixed. The reaction mixture was refluxed on water bath for 2–3 h. Yellow coloured amorphous complex was separated by adding ether. The complex was filtered and washed with ether. The complex was dried in vacuum over fused calcium chloride.

$$R \longrightarrow CH = N - NH - C$$

$$OH$$

$$OH$$

RESULTS AND DISCUSSION

The complexes are yellow coloured amorphous substances, soluble to a limited extent in nitrobenzene, chloroform, tetrahydrofuran, dioxan and highly soluble in ethanol, methanol, DMF and DMSO. The elemental analysis agrees with 1:2 stoichiometry of the type ZrOCl₂L₂ (Table 1). The molar conductance values of the complexes in DMF at the concentration of 10⁻³M are given in Table 1. These values are too low to account for any electrolytic behaviour¹².

TABLE-I ELEMENTAL ANALYSIS AND CONDUCTIVITY DATA OF THE COMPLEXES

Post Maril Committee	% Ana	lyses, Found	1 21		
Empirical formulae	Zr	N	Cl	$- \Lambda_{\mathbf{m}} \mathbf{ohm}^{-1} \mathbf{cm}^2 \mathbf{mol}^{-1}$	
ZrOCl ₂ (C ₁₄ H ₁₂ N ₂ O ₂) ₂	14.4 (14.2)	9.3 (8.7)	10.0 (11.1)	32.5	
ZrOCl ₂ (C ₁₅ H ₁₄ N ₂ O ₂) ₂	14.5 (13.6)	8.4 (8.2)	10.1 (10.6)	32.4	
$ZrOCl_2(C_{15}H_{14}N_2O_2)_2$	14.1 (13.6)		10.2 (10.6)	36.1	
$ZrOCl_2(C_{15}H_{14}N_2O_2)_2$	13.9 (13.6)		9.9 (10.6)	33.0	
ZrOCl ₂ (C ₁₄ H ₁₁ CIN ₂ O ₂) ₂	12.0 (12.5)	8.3 (7.7)	8.9 (9.2)	45.6	
ZrOCl ₂ (C ₁₈ H ₁₄ N ₂ O ₂) ₂	12.2 (12.0)	8.8 (7.4)	8.4 (9.3)	26,3	

The important IR frequencies of the ligands and their zirconium complexes along with their assignments are summerised in Table 2.

52 Angadi et al. Asian J. Chem.

TABLE-2
IMPORTANT INFRARED FREQUENCES (cm ⁻¹) OF ZrO(II) COMPLEXES AND THEIR
ASSIGNMENTS

Complex	ν(NH)	v(OH)	v(C=O)	ν(C=N)	ν(CO)	v(Zr=0)	ν(Zr—N)/ ν(Zr—O)
I	3175s	2800 br	1625s	1610s	1295s	900s	545vs 425s
П	3150b	2800 br	1620s	1600s	1295s	905s	545s 425s
Ш	3150m	2800 br	1620s	1600s	1295s	905s	525b 455w
IV	3150b	2800 br	1625s	1600s	1298s	910s	525s 420b
v	3175b	2800 br	1620s	1600sh	1300ь	900s	545s 440s
VI	3150s	2800 br	1625s	1600s	1300s	920s	555s 440s

It is established that the hydrazones are capable of exhibiting keto-enol tautomerism, however, one of the form is retained in complexes¹³. In the complexes under present investigation the spectral observations suggest that the hydrazones exist in the keto form. The following evidences may be advanced in support of the above conclusion.

The medium intensity band in the region $3275-3200 \text{ cm}^{-1}$ attributable to the secondary NH stretching vibrations¹⁴ of the ligands is observed in the region $3175-3150 \text{ cm}^{-1}$ for the complexes. In the ligands the high intensity band in the region $1675-1650 \text{ cm}^{-1}$ is ascribed to v(C=0) and another band in the region $1625-1600 \text{ cm}^{-1}$ to the v(C=N) vibration in view of previous assignments¹⁵. We observe a clear resolution of these bands in the complexes too. The high intensity band around 1625 cm^{-1} is assigned to v(C=0) and other one in the region $1610-1600 \text{ cm}^{-1}$ to v(C=N) vibration. The shifting of the both v(C=0) and v(C=N) to the lower frequency indicates the coordination of both the groups viz, v(C=0) and v(C=N) to the zirconium moiety through oxygen and nitrogen respectively.

The broad weak band in the region 2750-2700 cm⁻¹ attributable to the intra molecular hydrogen bonded —OH¹⁶ is retained in the complexes suggesting that the o-hydroxy group has not taken part in the bond formation. The phenolic (C—O) stretch does not show any shift to the higher frequency (Table 2), indicating that the OH group has not undergone deprotonation during the reaction.

The comparative study of infrared spectra of hydrazones and zirconium complexes, have made us to assign as strong band in the region 920-900 cm⁻¹ to v(Zr=O) (oxocation bond).

The (M—L), (M—O) and (M—Cl) vibration modes are generally found to occur¹⁸ between 600–250 cm⁻¹. However, in these complexes we are observing the bands in the region 575–480, 460-420 cm⁻¹ and are assigned to ν (M—L) and ν (M—O) vibrations respectively^{17, 18}.

The pmr spectra of the ligands is characterised by four signals at 7.1, 7.7, 8.1

and 8.8 ppm and they have been attributed to the various protons of phenyl ring of the aldehyde part, phenyl protons of the hydrazide part, protons of NH + CH and the OH protons respectively.

In the corresponding complexes all the signals show a shift to the lower field and appear at 7.4, 7.8, 8.5 and 9.35 ppm respectively. This indicates that the ligands behaves as bidentate in these complexes.

On the basis of these studies the following structures for these complexes has been suggested in which zirconium exhibits the coordination number seven.

ACKNOWLEDGEMENT

Authors are grateful to the Chairman, Department of Chemistry for facilities.

REFERENCES

- P.V. Gogorishvilli, M.V. Karkarashvilli and D.Z. Kalandrishvilli, Z. Neorg. Khim., 14, 1516 1. (1969).
- K. Nagano, H. Kinoshita and A. Hirakawa, Chem. Pharm. Bull., 12, 1198 (1964).
- 3. R.C. Agarwala and A. Bahadur, Indian J. Chem., 7, 1038 (1969).
- 4 J.F. Alcock, R.J. Baker and A.A. Kiamintis, Aust. J. Chem., 25, 289 (1972).
- 5. R.M. Issa, M.F. Iskandar and M.F. El-Shazly, Z. Anorg. Allg. Chem., 354, 98 (1967).
- R.M. Issa, M.F. El-Shazly and M.F. Iskander, Z. Anorg. Allg. Chem., 354, 90 (1967). 6.
- 7. H. Ohta, Bull. Chem. Soc. (Japan), 31, 1056 (1958).
- L. El-Sayed and M.F. Iskander, J. Inorg. Nucl. Chem., 33, 435 (1971). 8.
- M.F. Iskander, S.E. Zayman, M.A. Khalifa and L. El-Sayed, J. Inorg. Nucl. Chem., 36, 551 9. (1974).
- L. El-Sayed, M.E. Iskander and A.El-Toukhy, J. Inorg. Nucl. Chem., 36, 1739 (1974). 10.
- K.K. Narang, Miss A. Agarawala, Inorg. Chim. Acta., 9, 137 (1974). 11.
- J.V. Quagliano, J. Fujita, G. Franz, D.J. Phillips, J.A. Walmsley and S.Y. Tyree, J. Am. Chem. 12. Soc., 83, 3770 (1961).
- L. Sacconi, J. Am. Chem. Soc., 74, 4503 (1952). 13.
- 14. C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Acad. Press, New York, London (1962).

- 15. (a) A.E. Martin, Nature, 166, 476 (1950).
 - (b) N.S. Biradar and V.H. Kulkarni, J. Inorg. Nucl. Chem., 33, 2451 (1971).
- 16. H.H. Freedman, J. Am. Chem. Soc., 83, 2900 (1961).
- D.M. Adams, Metal-Ligand and Related Vibrations, Edward, Arnold, London, p. 268 (1967).
- K. Nakamoto, in K. Nakmoto and P.J. McCarthy (eds.), Spectroscopy and the Structure of Metal Chelates, John Wiley and Sons, New York (1968).

(Received: 22 September 1993; Accepted: 30 April 1994)

AJC-812

Analytical Chemistry

SAC 95: INTERNATIONAL CONFERENCE ON ANALYTICAL CHEMISTRY

HULL, U.K.

July 9-15, 1995

Contact address:

PROFESSOR A. TOWNSHEND School of Chemistry University of Hull, Hull-HU6 7RX U.K.

Tel: +44 (482) 465027 *Fax:* +44 (482) 466410

Chemistry of Natural Products

20TH IUPAC SYMPOSIUM ON THE CHEMISTRY OF NATURAL PRODUCTS

CHICAGO, U.S.A.

September 1996

Contact Address:

DR R.J. PARIZA
Manager, D-54P
Building A-1
Abbott Laboratories
North Chicago, IL 6006

North Chicago, IL-60064-4000, U.S.A.