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Keeping in view the importance of hydrodynamics in various
applications, ¢.g., the recovery of oil or gas, conservation of water
by hydrologists, movement of subsurface water by soil scientists
and bed reactors in laboratory, refinery or chemical plant by chemi-
cal engineers, the aim of the present paper is to 1eport an analysis
for the unsteady flow of a viscous fluid in porous cquilateral trian-
gular tube. Technique of Laplace transformation has been applied
to solve the equation of motion. The flow considered here is laminar
and unsteady. Fluid is considered viscous incompressible and
boundary is impermeable. Here the pressure gradient is taken and
function of time. A few particular cases, i.c., flow under constant
pressure gradient applied for time and flow under harmonically
oscillating pressure gradient, have also been deduced. Results for
ordinary viscous flow have also been obtained. It is demonstrated
with the help of graphs that the flow in porous medium is slower
than in an ordinary flow.

INTRODUCTION

The study of flow in porous medium is of great importance in the recovery of
oil or gas, for hydrologists interested in production and conservation of water, for
solid scientists concerned with the movement of subsurface water for chemical
engineers interested in fixed bed reactors in refinery or chemical plant. Authors
like Fan and Chao,' Jones,” and Jaffery” etc. have discussed the flow of viscous
fluid through different porous cross sections. There are two general cases of
interest; in the first problem the fluid is either withdrawn or injected at a constant
rate. In other problems the fluid pressure at the production face is held constant
at some value different from the initial pressure. These solutions may be found
in Kartz, Hand Book of Natural Gas Engineering®. For slightly compressible
liquids and when it is assumed that the medium is homogeneous, the viscosity
and compressibility of the liquid are constant. An analytic solution for the
equation has been given by Hirst and later by Van Everdingen and Hurst. In this
solution, Hurst and Van Everdingen have used Laplace transforms.>®
In the present investigation we are going to solve some new problems and
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unsteady flow in porous medium. Further, our attempts are to obtain some new
results on this problem. Here we observe that the flow pattern in porous medium
is same as in ordinary medium except that the velocity in porous medium is slower
than in ordinary.

Formulation of the problem

We consider unsteady flow of viscous fluid in porous equilateral triangular
tube. Let K be the permeability of motion
Then the equation of motion is

—:—Vp—Eq+qu (N

and the equation of continuity is
N
Vg=0 (2)
where a is the velocity vector and p is the density of fluid.
We consider the rectangular co-ordinates system and the side of the cquilateral
triangular tube is of the length 2a. It is assumed that the boundary is impermeable

and the axis of the tube is along z-axis. Therefore the cross section of the tube is
formed by the straight lines

x=0, x=aN3, y=0 and y=2a3 (3)

Fig. |

The velocity vector q is such that
q=0,0,w(x,y,0) (4)

According to assumption the pressure gradient along z-axis or the axis of the
tube becomes

_1ap_,
p az - t([) (5)
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Here P =0 and 9p =0 (6)
ox dy

Since it is obvious that
N
q=w(Xx,y,t)

99 _ow
Therefore, 3 o

dw  dw
d ="+
an d ox2 9y’

From (6), we can write

Tpoz p oz
Now the equation (1) becomes for above results
Wy 4 B [azw + azvf]— B (7)
at plox* ay* | Pk

where v = W/f = a constant.
Here the boundary conditions are

w=0 at x=0, aVi and y=0.7

w=0 at t<0 : 8)

Solution
The solution of the equation (7) satisfying the condition (8) may be assumed
as

=X I A, (0 sinq,(x) sin q,y) 9)

m=0n=0

where q,,(x) = g Cm- I)r

and qu(y)= g(h + )n

Also A, ()=0att<0
From equations (7) and (9), we can write

d .3 .
o (Ana(®) sin gu(x) sin? g, (y)
=[J (1) sin qu(x) sin g,(y) = VR, , +% sin” q,,(x) sin’ q..(y)] (10)

Integrating (10) we get
3 V3 20V3
5 An (D) J J sin® qin(x) sin’ qu(y) dx dy
0o 0
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a3 203
=0 | [ sinqu(o) sin q,(y) dx dy
0 0

a3 23

Ryt [ ] sin g0 sin? g, dx dy) )

k 0 0

V3 243
=I | sin? qu(x) sin® qu(y) dx dy
0 0

-1 23—2— 2 in? 2a—i«siﬁ a+___l sin’q 2 sin’q 22

a3 T2V3g, " B T2V, " VB T agyg, T BT
. a .

But sin? Gm 5 = $in 2(2m+ )n

For any +ye and —ve values of m and n,
sin2(2m+ =0

1[2a%] a2
Therefore I, = =2 [—-} =%
a3 203
Let I, =j I sin q,,(x) sin q,(y) dx dy
0 0

[ cos q,,,(a/\/3-) cos q,,(2a\[3_— cos qm(a\/B_) - Cos qn(2a\/3—) +1]

Illqll
\/* VBEm+1)
But ¢0s qu(aV3) = co . \/2—
=cos 2m+ )r=-1
Similarly cos (]"(211\/.?) =-
= 4
qlllq"
from (ii), we have
N I a2
{Am n(l)}_ =f() —— - (Ry.w+ T =
Andn k 6
dJ . 1
or aAm. W) = 1) Sin— Ryt E X Ay () (12)
where San= A (13)

"l
(qnn

Applying Laplace Transforms to (12) we get
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L{Am n(()} =L Sm, of () — N Rm, nt —:Z {L(Am n(t))} (14)

where {A, (D)} = %{Am' 20}

We find that L{An 10} =] e™Ana0) dt
0

=S [ A, (0 dt
0
Since, for t=co=> €™ =0 and for t=0= A,, ,(t) =0 which is given from (8),
therefore we can write

L{Am. »(0)} = SA,, n(s)
and L{Sm, of®)} = Sy, of(5)

and J Rm, n +é Am, n(t)} =\ Rm, n +'ll; f(s)

Now the equation (14) reduces to give
S, nf(S)

Ap n(8) = —:W (15)

Taking inverse Laplace Transform of (15), we have

-1 o) — 1 - £(s)
L™ {Am a(s)} =L [Sm D Y (16)
We find that L™ (A n(s)) = A, o(D)
: -1 1 VR, 7k
and L s+ :lR,,, o+ Vk

By convolution theorem of L/T,
- £(s)
Sm-n[L S+ VR n 4 1K
t
=S.M[ B M (= ) dx}
0

Therefore from (16), we get
t

Am o) =Sm J’ e VR LTI £ — A) dA

0

Substituting the value of A, (t) in (9), we have
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0o oo

t
W=z I S,,,'n[sin Qu(X) sin q,,(y)] e VRua+ R £ ) dx] 7
0 )

m=0n=0

where S, , and R, , are given by relations (13), (20) and (10) respectively. For
this we are going to study three particular cases such as flow under harmonically
oscillating pressure gradient, flow under decaying pressure gradient and flow
under constant pressure gradient applied for time respectively.

Particular Cases
Case 1. Flow under harmonically oscillating pressure gradient. Here
f(t) = Ke™ sin t
Thus f(t = 1) = Kge® "M sin (t = ) (1.0)

where K is the positive constant. Substituting the values from (10) in (17) we
get

o (R, o+ IVk +0/v) sin YT + w(l — cos T)
W= 3§, singueth hd hd
V o mn=0 W'+(Rm ,,+|/k+(X/V)

For ordinary viscous flows porosity is one i.e., resistance of medium is very small,

ie., k—> o then I/k—0.

. W _—
H= Ko and T=wt

yi= wit g
4 ( ) (Rm ") m Il V

= Z Sp,nsin Om sin q eu(l—k) sin ‘JLT"FW(I —COS Y1)
ne n

o
0 w2+ Ry, +—

(1.2)

1.0 = Ordinary Medium (K — oo)

*~=<Porous Medium (K = |/n?)
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Fig—2. Velocity under harmonically oscillating pressure gradient plotted against x for
different values of T (a=b=1,y=0.5, y=(.5).
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The continuous and dotted curves in the figure show the unsteady flow of transient
velocity distribution in the central plane of the duct at several times after the
application of harmonical pressure gradient for the flow in ordinary and in porous
medium respectively.

Case 2. Flow under decaying pressure gradient. Here

f(t) = Koe™
f(0) = A = Koe ™

Proceeding as in case (1) we have
t

W=K, T Sm.n SiN Gy, sin q, {I g Runt VK)g=w(t=2) d?»}

m.n=0 0
- . . | ) ]
= Kom‘ f:osm' a 8In g, sin q, m [e= Run* VK)g0t) @0

where wt =yt and vt =T.
For ordinary medium 1/k > 0 as k — o

Wp=Ko I S, asingqysing,X

] _ -
3 m [e Ry n—€™] 2.2)

— Ordinary Medium (K — )
e—e—e Porous Medium (K = l/nz)

0

0.04 0.05 006 007 0.08
Wy >
Fig.3 Tua=b=1,y=0.5,y¢y=0.5)

0 00l 002 003

The continuous and dotted curves in the figure show the unsteady flow of
transient velocity distribution in the central plane of the duct at several times after
the application of harmonical pressure gradient for the flow in ordinary and in
porous medium respectively.

Case 3:  Flow under constant pressure gradient applied for time. Here

f(t) = Ko[H(t) = H(t = A)]
f(t = &) = Ko[H(t = &) — H(t = A = 1)]
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Substituting the value of f(t) in equation (17) we get

t
W=Ky £ Sy ,singysing, {j e VR ot 1R [ — A) — H(t - A - A))] dx}
0

mn=0

Condition: If t>A then H(t—A)=1 and if t<A then H(t—A)=0, here
t > A, therefore H(t —A) = 1. Let

t
1= [ (e ®us X [(H((— &) - H(t - A - M)] dA)
0

(e VRt IR B 2)) dA

I
O = O e~ O ey ~

e YRua+ VIOM et _ 2 —4) dA

Let I = e ®uat VA 1~ X) db
t
and I = R TR g — A~ ) d)
0
t
For 1= [ e ®ua® 0K (11g — 2 di
0
put X=VR,, .+ I/k

t
L =[e ™ Hi-2)dA
0

~XA

N B
-X dA

t t d -X
H(t-2) &= dr
]o 0 -X

= [H(t -\
From definition of heavy side unit step function,
Ht)=1 if t>0
=0 if t<0
= Ht-A)=1 whent-A>0=2r>A.
Now if time t > A then
t

1= e™H(t-1) d
0

_ X
==X [e H(t)]



* Vol. 8, No. 3 (1996) Unsteady Flow of Viscous Fluid in Porous Triangular Tube 393

For time t = A, we have
I, =- 312 [eX*—HM\) A>0
Similarly

t
I = J e ®uit T [H(e - A= 1) dh
0

t
= [eHt-A-2) dr,
0

where X =VR,, ,+ I’k = _% [H(-t)e™ = 1].
For time t = A, we have

L= —% [H=Me™ - 1]

1=1,+12=%[H(x)+ 1 —e™

If we take t > 0 then by definition of H(£)
H(-)=0= H(-A)=0 and HA)=1
Since A=t>0;A>0

! ~xA | —R,, ,+ /K1
- — e — 2 — m.n

MG e Iy J
Further we have

oo

. . 1 _
W=K, X Sm. n SINQy, Sinq, ﬁﬁ_— (2-e Rua* Hk)t)

mn=0 m,n+ 1/k
= _ _(Rm. nt 1K)t
=Ky ) Sm, n Sin qm sin qn 2__5______
mn=0 Rm, nt 17k
Hence
W - ) ‘ 2 — e=CRy, , + VKA
We=oo= 5 Sy, sin gy sin gy e —— 3
¢ K()/V m, n =()Sm n S G ST G Rm. nt 17k ( 2)
For ordinary viscous flow k — 0
7 W = . . 2 _ 6_(Rm. u)t)
We=5—= X 8§, ,sinq,sinq,————~ 33
C Ko/\/ 0 m, n 9 qn Rm, . ( )

Discussion

Equation (17) gives the fluid motion with pressure gradient as function of time
through equilateral triangular tube. Equations (1.1), (2.1) and (3.1) give the
unsteady flow of viscous fluid through porous equilateral triangular under
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harmonically oscillating pressure gradient, decaying pressure gradient and con-
stant pressure gradient for time respectively.

It is seen that for highly porous medium, the velocity pattern is same as that

found by Fan and Chao. Figures show that flow in porous media is slower than
that calculated by Fan and Chao for media without pores.

| —— Ordinary Medium (K — )"
s——e Porous Medium (K = l/1t2)

004 005 006 007 008
We -

0 00l 002 003

Fig. 4. Velocity under constant pressure gradient plotted against x for different values of

1.
2.

S

T(a=b=1,y=05).
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