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Steady Flow of Fluid through Equilateral Triangular Tube
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Keeping in view the importance of fluid mechanics in various
applications in hydrology and chemical engineering, the aim of the
present paper is to report an analysis of the steady flow of fluid
through an equilateral triangular tube by taking into account the
velocity slip and no velocity slip at the surface of the medium. The
fluid motion and flux are obtained in both cases. The flow con-
sidered here is laminar and stcady. Therefore, the velocity of fluid
is a function of any distance taken from z-axis. A particular case
i.e. the motion of frictionless fluid in a rotating vessel of the form
of hyperbolic cylindrical section has been considered and important
mathematical results and conclusions have been drawn.

INTRODUCTION

There is great importance of both steady and unsteady flow in porous and
non-porous media. They play a major role in petroleum industry and hydrology
concerning the migration of oil gas and water and in chemical engineering
concerning the filtration process."™ Some problems on specialised flow were~
studied by various workers but they were based on older theories of non-linear
viscosity such as Rivilin and Erickson theory.” The problems were not fully
explored in the light of Nolls simple fluid theory. Recently Hele show flow of a
static viscous fluid. We have taken some problems of steady flow of fluid through
an equilateral triangular tube based on Poiseuille’s law.®

tDeptt. of Mathematics, M.M.T. College, Darbhanga, India.

Nomeneclature:
I absolute viscosity
u, v, w  velocity components
pP1. p2 the values of the mean pressure

the mean pressure or pressure

the distance from origin

the length of pipe

integration constants

the length of sides of equilateral triangular pipes

velocity of liquid normal to origin

the constant pressure gradient

semi-area of the hyperbolic cylindrical section (particular case)
mean velocity over the cross section.
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Basic equation of the problem

We take the similar side of length a of equilateral triangular pipe. Here,. z-axis
is taken parailel to the line passing through the centre of gravity of the equilateral

triangular tube.

Fig. |

‘ine point O is taken as origin. It is obvious that the direction of velocity of
fluid is parallel to z-axis everywhere. The velocity q is a function of distance r

d
from the z-axis. Here . 0 because the flow is perpendicular to x-y plane. The

9z

. . . d
tangential stress across a plane perpendicular r is equal to u%; therefore due to
Jr

tangential fractions on the two curved surfaces a retarding force is produced and
this retarding force is balanced by the normal pressures on the plane end of the
cylindrical shell.

Now we can write

Jd(d
e [(—? 21trL]dr =(p, — py)2nr dr

J
Jd( o (p) —par
H O(.99|__WPiTP)r
ence By [r Dr) m (1.1)
Solution
Integrating (1.1) we get
_ (pl - pZ) 2
———-——4ML r+Alogr+B (2.1).

The boundary condition as such is thatq=0 atr=0and q=0 atr= —\[‘l3=

There is no slip at the wall of the pipe (r = \—f—;_)
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Using this boundary condition in (2.1) we get B=0.

(pi —pa’ 1
2Ly loga-1log3

A=

Substituting the values of A and B in (2.1),

P -pPD| 2 | 2
_ - 22
s |” loga'— 071568 @2)

Flux across any section:

anF Py —p ¥ 2
‘ _Pi—m a - rd
J‘ q 27r dr 4u~L 2n -(’; [3 ]og a—-0.71568 )r '

a

_2n(p, —py) ,: a’ a’ a‘]

apuL | 3loga-0.71568 6 36
_a'n(pi - p) ! 1 23
T 12uL [ 3loga-0.71568 6 :

It is assumed that flow takes place under pressure only. If we have extraneous
force X acting parallel to length of the pipe, then

(p - ppma’ ! 1
20l |3loga-071568 6 PX 24

Generally the component of gravity in the direction of the length of the tube is
X. This result has the great importance of furnishing a conclusive fluid. There is
no appreciable slipping of the fluid in contact with the wall. If we are to assume

slipping coefficient P as

flux =

__9% _b
q=-3 where l—B

This determines the constant A. The equation (2.1) shows that

_Pi=P2| » 1 2 a
9= 40 [“ 3loga—0.71568 " +27‘7§’] 25
Corresponding value of flux is
a3 4
_amn(p, —p2) I 1.2
{qz’"‘"" 12uL [3 loga—0.71568 6 a 3] (2.6)

For Poiseuille’s law to hold true, we have
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1

N N B
3loga—0.71568 6

Hence, a=173.4cm

Here we have found a new result in view of our problem. The Poiseuille’s law
holds true the side of equilateral triangular tube, a, is 173.4 cm. The equation
(2.5) shows that the time of flux of a given volume of fluid varies directly as the
length of the tube, inversely as the difference of the pressures at the two ends and
also inversely as the fourth power of the length of the side of the equilateral
triangular tube, a (= 173.4 cm).

Particular case

We are studying theoretically the motion of frictionless fluid in a rotating
vessel of the form of hyperbolic cylindrical section.

X
'y
Qa,o)
\‘/'/
— —s
1 — -
—
Y (o [ (€] le) 4
\ -b) —
’ / - _:. ( hb)
—lp -—
[
o
X
Fig.2. A cross section of hyperboiic cylinder
Formulation

We take the velocity components of fluid along x-axis and y-axis as zero
respectively. It is assumed that q is a function of x and y only and'u=0 and v =
0. Here the z-axis coincides with the length of the hyperbolic cylinder.

Neglecting the inertial terms in the equation of motion of viscous fluid, the
equation reduces to, in the absence of extrancous forces
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dp
V== 3.1
Hvg== (3.1
We denote %}3 = P onwards.
Solution
. 2 P
From (3.1), we can write V°q=— "
In the case of hyperbolic cylindrical section, we assume that
x? yz .
q=A|l—-——>3} forone sheet (3.2)
a“ b
Also we assume that
x? Y2 .
¢, =B]| I __5+E)_2 , for another sheet 3.3)
a

where a and b are semi axis of the hyperbolic cylinder. The equations (3.2) and
(3.3) will satisfy

P
Vig =--— (3.4)
191 "
a;md Vig, = :“B 3.5)
Equations (3.2) and (3.4) give
PRI (3.6)
2u @>+b%) '
Similarly from (3.3) and (3.5),
po P _ah’ 37
2u (b% - a%) o

Let, for whole hyperbolic cylinder, q = q(q,, q5). In this case we assume that
22 22
- XY X LY
o-a[1-5-E]edf 120

2 2
=(A+B)—(A+B)§3-—(A—B)X— (3.8)

where A and B are kﬁown from (3.6) and (3.7).
Here also

VZ = "‘_P
H
where p = constant pressure gradient

or (A—B)[AiB%+l:,=-p— (3.9)
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Hence the discharge per second is equal to

2

quxdy ” {(A+B) (A-B)= —(A—B)%}dxdy

2 2 2
_ab’[p 2b2(14 5b)+(l42+5t;)]
105 | 20 @ +b) (b -2a)

losp———(l4+5a)

6
_ P a’b
[ aacay =1 75 4 sa)

Hence considerable variation may exist in the shape of the section without
seriously affecting the discharge, provided the sectional area be unaltered. Here
it is strictly considered that b > a

RESULTS AND DISCUSSION

Equation (2.2) gives the fluid motion of steady flow through equilateral
triangular tube with no slip condition while equation (2.5) gives the fluid motion
with the assumption of slip condition. Equation (2.3) gives flux across any section
with no slip condition and equation (2.6) gives flux across section with slip
condition.

In the steady case considerable variations exist in the shape of sections without
seriously affecting the discharge provided the sectional area be unaltered.

Further, from (2.2) and (2.3) we find that 4qya = rate of shear close to the
wall of the channel where qq is the mean velocity over the cross section for values
of gy exceeding certain limits depending on the relation between viscosity and
length a; rectilinear flow becomes unstable and the motion becomes widely
irregular, and in this position the motion of the fluid is turbulent. The case of flow
through a pipe of circular section was the mode of the subject of a careful
experimental study by Reynolds by means of filaments of coloured fluid
introduced into the stream. So long as the mean velocity g, over the cross section
falls.below a certain limit depending on the radius of the pipe and the nature of
the fluid, the flow is smooth and in accordance with Poisseuille’s laws accidental
disturbances are rapidly obliterated, and the region appears to be thoroughly
stable. As qq is gradually increased beyond this limit, the flow becomes
increasingly sensitive to small disturbances. But if care be taken to avoid these
disturbances, smooth rectilinear character may for a while be preserved unntil at
length a stage reached beyond which it is no longer possible. When the rectilinear
regime definitely breaks down the motion becomes widely irregular and the tube
appears to be filled.

Thus the-curve (iv) illustrates with exaggerated amplitude the case of slightly
disturbed stable steady motion parallel to an axis of permanent translation. The
case of slightly disturbed unstable steady motion would be represented by a curve,
continuous to (ii), on one side or the other, according to the nature of disturbance.
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Fig. 3. Flow pattern of liquid.
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