Ultrasonic Sound Velocity Studies of Dioxane-Water Solutions of 3-α-Furyl Acrylic Acid at 30°C

SHIPRA BALUJA and P.H. PARSANIA*

Department of Chemistry

Saurashtra University, Rajkot-360 005,. India

Ultrasonic sound velocity studies of $3\text{-}\alpha\text{-}\text{furyl}$ acrylic acid (FAA) in varying proportions of aqueous dioxane mixtures (90, 70, 50 and 30 weight %) were investigated at 30°C using interferometer operating at a frequency of 1 MHz. The decrease of β_{ad} and increase of U and Z with concentration indicated the presence of strong interaction through H-bonding between acid and dioxane molecules. This is further supported by non-linear increase of η with concentration. The positive values of S_n implied the structure-making tendency while that the negative values implied the structure-breaking tendency of FAA in a given solvent mixture at 30°C.

INTRODUCTION

Knowledge of acoustical properties of any solution provides information about the interaction occurring in the solutions¹⁻⁴. In continuation with our earlier work⁵, the present paper describes the ultrasonic velocity studies of 3- α -furyl acrylic acid (FAA) in varying proportions (90, 70, 50 and 30 weight %) of dioxane at 30°C.

EXPERIMENTAL

The measurements of density, viscosity and sound velocity (1 MHz) of FAA in varying proportions (90, 70, 50 and 30 weight %) of dioxane-water system were made at 30°C according to our earlier publication⁵.

RESULTS AND DISCUSSION

Figs. 1 (a) and (b) show the experimental density (ρ) and sound velocity (U) plots against concentration of FAA in aqueous dioxane (90, 70, 50 and 30 wt. %) at 30°C. It is found that U increases with increase in FAA concentration, reaches maximum and then decreases. This type of variation of U generally indicates association between molecules. It is likely that the solvent dioxane breaks the acid dimers into monomer form and H-bonds are formed between the oxygen of dioxane molecules and the monomer of acrylic acid. The H-bond formation strengthens the intermolecular forces resulting in a decrease of compressibility and increase of U. This structure-breaking tendency is observed up to a certain

concentration of binary mixtures and again the reverse phenomena takes place with increasing FAA concentration, *i.e.*, dimerization of FAA, and as a result U decreases. This is further supported by non-linear increase of U with concentration (Fig. 1 (b)) indicating structural changes. Thus, the decrease of isentropic compressibility β_{ad} and increase of U and acoustical impedance (Z) with concentration confirms the presence of strong interaction through H-bonding between acid and dioxane molecules. Such results are also observed in variety of liquid mixtures^{6–8}. Ultrasonic velocity studies in the solutions of carboxylic acids in dioxane ⁹ indicate association between the monomers of carboxylic acids and oxygen of dioxane.

The solvation number S_n is useful in understanding the structure-breaking and structure-making tendency of added electrolyte in a particular solvent¹⁰. The variation of S_n with FAA concentration is presented in Table-1. It is found graphically that S_n decreases exponentially for 70% dioxane, which might be probably due to ion-ion interaction. In case of 30, 50 and 90 wt % dioxane, S_n is found to increase up to about 0.02 M, then decreases with FAA concentration.

The increase in S_n indicates the decrease of ion-ion interaction and hence occurrence of the association with solvent molecules. The positive and negative values of S_n, respectively imply the structure-forming and structure-breaking tendency of FAA in a given solvent composition.

TABLE-1 VARIATION OF S_n WITH FAA CONCENTRATION IN VARIOUS COMPOSITIONS OF DIOXANE AT 30°C

Concentration M -	S _n weight %			
	30	50	70	90
0.01	0.1	1.1	22.8	-4.0
0.02	2.4	2.9	12.8	-2.4
0.04	1.4	-0.3	6.1	-0.2
0.06	-0.9	-1.0	4.4	-0.1
0.08	-1.5	-1.6	2.2	0.0
0.10	-1.8	-1.5	0.5	0.1

ACKNOWLEDGEMENT

The authors are thankful to the Head of Chemistry Department, Saurashtra University for providing necessary facilities.

REFERENCES

- 1. R.T. Bayer and S.V. Lecher, Physical Ultrasonics, Academic Press, New York (1969).
- 2. Ch. J. Burton, J. Acoust. Soc. Amer., 20, 86 (1948).
- 3. S. Bagchi, S.K. Neema and R.P. Singh, Eur. Polym. J., 22, 851 (1968).
- 4. G.V. Reddy and R.P. Singh, Acoustica, 46, 342 (1980).
- 5. Shipra Baluja and P.H. Parsania, Asian J. Chem, 7, 417 (1995).
- 6. J. Nath and Rashmi, J. Chem. Soc. Faraday Trans., 86, 3399 (1990).
- 7. T.M. Aminbhavi, M.I. Arrlaguppi, S.S. Joshi, S.B. Khinna, R.S. Var and R.H. Balundgi, Indian J. Tech., 30, 303 (1992).
- 8. V. Rajendran, A. Marikani and N. Palanively, J. Pure Appl. Ultrason., 16, 16 (1994).
- 9. B. Anbanathan, B. Krishan and S. Rao, Indian J. Chem., 13, 512 (1975); 14, 277 (1976).
- 10. M. Woldan, Z. Physik. Chemie, 269, 628 (1988).

(Received: 31 July 1995; Accepted: 24 October 1995) AJC-1030