Quinolinium Bromochromate as a New Brominating Agent for the Bromination of Metal β -Diketonates

N. RAMAN*, R. PAUL PANDIAN and A. SHUNMUGASUNDARAM

Department of Chemistry

VHNSN College, Virudhunagar-626 001, India

Reactions of metal(II) and metal(III) β -diketones with quinolinium bromochromate (QBC) in glacial acetic acid medium at room temperature produce electrophilic γ -substituted bromo products. The products have been characterised by elemental analyses, IR and 1H NMR spectral studies. Based on the experimental evidences, the reagent QBC can act as a brominating agent for the bromination of metal β -diketonates.

INTRODUCTION

Although in recent years a number of studies on oxidation reactions involving quinolinium halochromates 1 and some organic compounds have been published, none of these deals with the bromination of metal β -diketonates by this type of quinolinium halochromates. Quinolinium bromochromate (QBC) has been very recently used as a reagent to oxidise some organic compounds 2 . The present work represents an attempt to search for newer and if possible better halogenating agents for β -diketonate chelates. QBC is here introduced for the first time as a brominating agent for the bromination of metal β -diketonates of many transition metals in glacial acetic acid medium.

EXPERIMENTAL

The metal acetylacetonates of Cu(II), Co(II), Ni(II), Cr(III), Co(III) and Mn(III) were prepared as reported³. QBC was prepared by the same procedure used for the preparation of quinolinium fluorochromate. The brominated products were identified by comparison with authentic bromoproducts prepared using reagents like N-bromosuccinimide,^{4,5} pyridinium bromochromate⁶ etc. The IR spectra of all the complexes were recorded on a Perkin-Elmer model 577 spectrophotometer using KBr discs. The ¹H NMR spectra were recorded on a Perkin-Elmer R32 Spectrophotometer operating at 90 MHz using TMS as internal standard.

Bromination of metal β -diketonates using QBC

To a solution of QBC in glacial acetic acid was added to the β -diketonate chelate dissolved in acetic acid in stoichiometric amount. The reaction mixture was heated on a water bath for about 1 h with occasional stirring and the completion of the reaction was evidenced by the supernatant solution turning green colour. Then the contents were cooled for 2 h. The solid bromoproduct was filtered, washed with chloroform and dried *in vacuo*. In the case of Cr(III), Co(III)

and Mn(III) chelates, the green solution was treated with petroleum ether and chloroform The solid bromoproduct was filtered and dried in vacuo.

RESULTS AND DISCUSSION

The reaction products obtained in the bromination of metal β-diketonates employing OBC in glacial acetic acid as a brominating agent are listed in Table-1. An examination of the products listed in Table-1 reveals that a simple electrophilic substitution reaction takes place at the γ-carbon of the coordinated β-diketone ring to give γ-bromoproducts without the rupture of the metal diketone bonding, that is to say the chelate gings remain intact. Major part of the reaction is over within 1 h. The yield of the solid bromproduct is around 40-50%.

TABLE-1 ANALYTICAL DATA OF THE ELECTROPHILIC Y-SUBSTITUTED **BROMO COMPLEXES**

C N	Complex	Analysis-Found (Calcd) %				a 1 .	Yield
S. No		M 15.0 (15.2)	C 28.9 (28.6)	H 2.8 (2.9)	37.8 (38.1)	- Colour Green	52
1.	Cu(Bracac) ₂						
2.	Co(Bracac) ₂	14.3 (14.2)	28.7 (28.9)	2.7 (2.9)	38.1 (38.6)	Blue	42
3.	Ni(Bracac) ₂	14.0 (14.2)	29.4 (28.9)	2.8 (2.9)	38.0 (38.5)	Brownish green	33
4.	Cr(Bracac) ₃	8-7 (8.9)	31.4 (30.8)	3.2 (3.1)	39.8 (40.9)	Brown	53
5 .	Co(Bracac) ₃	9.8 (9.9)	30.8 (30.4)	3.0 (3.1)	40.0 (40.5)	Green	40
6.	Mn(Bracac) ₃	9.0 (9.3)	30.8 (30.5)	3.1 (3.1)	39.2 (40.7)	Pale yellow	30

^{*}acac = acetylacetone.

Comparison of the IR spectrum of the substrate chelate with that of the electrophilic bromo-\(\beta\)-diketonate product reveals that because of the C—H bond becoming C-Br, the absorption bands corresponding to pure C-H vibration or their combined vibrations wherein C—H is a part would be most affected. Thus, the weak band at 1195 cm⁻¹ and the medium intensity band at 795 cm⁻¹ corresponding to the in-plane bending (δ_{C-H}) and out-of-plane bending (π_{C-H}) respectively disappear in the spectrum of the y-substituted product. Bands at 1520, 1195 and 795 cm⁻¹ present in the unsubstituted complexes are totally absent in the substituted complexes. The absence of these bands confirms that substitution has occurred at the 3-position in the chelate ring. The absence of bands in the 1750-1700 cm⁻¹ range indicates that no ring flipping has occurred and that the diketones have coordinated through their carbonyl group. 4,5 In ¹H NMR, the proton resonance occurring at 5.3δ coorresponding the methine proton dramatically disappears in the spectrum of the bromoproduct confirming γ-substitution.⁷

The formation of the electrophilic γ-substituted bromochelate suggests an involvement of Br⁺ cationic species. This can be accounted for by the probable *in situ* oxidation of Br⁻ to Br⁺ by [HCrO₃]⁺ species of the QBC reagent in acid medium.⁶ A propable mechanism as shown in Scheme 1 can be visualised.

Scheme 1. Formation of Electrophilic Substituted Product

$$QHCrO_3Br \longrightarrow QH^+ + [CrO_3Br]^-$$
 (1)

$$[CrO3Br-] + H+ \xrightarrow{HOAc} [HCrO3]+ + Br-$$
 (2)

$$2Cr(VI) + 3Br^{-} \longrightarrow 3Br^{+} + 2Cr(III)$$
 (3)

where M = Cu(II), Co(II), NI(II), Cr(II), Co(III), Mn(III), n = 2 or 3 as the case may be

ACKNOWLEDGEMENTS

The authors thank the Head and Director of CSIAC, VHNSN Colege, Virudhunagar for providing facilities and USIC, Madurai Kamaraj University, Madurai for recording the ¹H NMR spectra.

REFERENCES

- 1. V. Murugesan and A. Pandurangan, Indian J. Chem., 31(B), 377 (1992).
- 2. A. Pandurangan, V. Murugesan and M. Palanichamy, Indian J. Chem. (in press).
- 3. R.C. Mehrotra, R. Bohra and D.P. Gaur, Metal β-diketonates and Allied Derivatives, Academic Press, New York, p. 31 (1978).
- 4. G. Shankar, K. Paulraj, V. Balasubramanian and S. K. Ramalingam, *J. Indian Inst. Sci.*, **65(B)**, 291 (1984).
- 5. G. Shankar and S.K Ramalingam, Transition Met. Chem., 9, 449 (1984).
- S.A. Samath, N. Raman, K. Jeyasubramanian, S. Thambidurai and S.K. Ramalingam, *Indian J. Chem.*, 32(A), 623 (1993).
- 7. S.A. Samath, M. Raman and S.K. Ramalingam, *Indian J. Chem.*, 27(A), 63 (1988).