NOTE

A New Anthraquinone Glycoside from the Heartwood of Cassia auriculata Linn

K.N. RAI*, KUMAR KAUSHALENDRA and JANARDAN SINGH†

Department of Chemistry

Shershah College (V.K.S. University, Ara), Sasaram-821 115, (India)

The present paper deals with the isolation and structural elucidation of a new anthraquinone glycoside. 3-hydroxy-6, 8-dimethoxy-2-methyl anthraquinone-1-O-β-D-galactoside from the heartwood of *Cassia auriculata* Linn.

In course of our studies on plant pigments of the genus Cassia¹⁻³, systematic chemical investigation of heartwood of *Cassia auriculata* (Leguminosae) has been undertaken. The plant is highly reputed for its medicinal value and tanning material.⁴ The present communication reports the isolation of a new glycoside on the basis of chemical and spectral evidences.

Air-dried and crushed heartwood (10 kg) of the plant (collected from Kauakol botanical garden, Nawada and identified in Botany Department, Magadh University, Bodh-Gaya) was successively extracted with hexane, CHCl₃ and alcohol. The concentrated alcoholic extract was treated with ice-cold water and fractionated into water-soluble and water-insoluble parts.

The ethyl acetate extract of aqueous alcoholic fraction after concentration under reduced pressure was subjected to column chromatography on silica gel and eluted with hexane \rightarrow CHCl₃ \rightarrow EtOAc \rightarrow MeOH gradient as eluent. The EtOAc—MeOH (8 : 2 v/v) eluate gave a compound which was crystallised from EtOAc—pet. ether mixture as light brown amorphous solid (950 mg). It responded to characteristic colour reactions of anthraquinones^{5,6} and glycoside.⁷ The compound analysed for (M⁺ 476) gave m.p. 235–37°C; (Found: C, 56.88; H, 4.76. Calcd. for C₂₃H₂₄O₁₁: C, 57.98; H, 5.04%); λ_{max} (MeOH) 255, 265, 288, 418 nm.; ν_{max} (KBr) 3350 ν (OH), 2950 and 2885 ν (OMe), 1765, 1730, 1645, 1570, 1460, 1250, 1185, 1080, 960, 840, 810, 730 cm⁻¹; ¹H NMR (DMSO-d₆, 300 MHz) δ 2.38 (S, 3H, CH₃), 3.25–3.70 (br, sugar protons), 3.89 (s, 6H, OCH₃), 5.20 (d, 1H, J = 8 Hz, C—1' galactosyl), 6.86 (d, 1H, J = 8 Hz, C—7), 7.25 (S, 1H, C—4), 7.68 (d, 1H, J = 8 Hz, C—5) and a phenolic hydroxyl at 7.55 (S, 1H, D 20

^{*}Address for correspondence: Dr. Kashi Nath Rai, Head, Deptt. of Chemistry, Moh. Gaurakshani, P.O. Sasaram-821 115, Bihar, India.

[†]Lecturer, Deptt. of Chemistry, J.J. College, Dehri-on-Sone (Bihar), India.

878 Rai et al. Asian J. Chem.

exchangable, C₃—OH). Acid hydrolysis gave an aglycone, C₁₇H₁₄O₆, m.p. 272–74°C, which was identified as 1,3-dihydroxy-6,8-dimethoxy-2-methyl anthraquinone by UV, NMR, mass spectra and direct comparison with an authentic sample⁸ and galactose (CO—PC, osazone, 183°C) in the hydrolysate. The galactose was found to be linked at position-1 of the aglycone⁹ which was supported by specific colour reaction.¹⁰ The permethylated glycoside on hydrolysis yielded 2,3,4,6-tetra-O-methyl-D-galactose which was identical to the methyl glactose obtained by D-glactose. Thus, on the basis of the above observations, structure of the new glycoside was assigned as 3-hydroxy-6,8-dimethoxy-2-methyl anthraquinone-1-O-β-D-galactoside.

ACKNOWLEDGEMENT

The authors are thankful to the Dy. Director and Head, RSIC, Lucknow for providing spectral analysis.

REFERENCES

- 1. K.N. Rai and S.N. Prasad, J. Indian Chem. Soc., 71, 653 (1994).
- 2. K.N. Rai, J. Bang. Acad. Sci., 17, 119 (1993).
- 3. K.N. Rai and R.A. Roy, J. Bang. Acad. Sci., 15, 193 (1991).
- 4. The Useful Plants of India, CSIR, New Delhi, p. 109 (1986).
- R.H. Thomson, Naturally Occurring Quinones, Academic Press, London, 2nd edn., pp. 40-44 (1971).
- 6. R.D. Tiwari and A. Richards, *Planta Medica*, 36, 91 (1979).
- H. Molisch, Monatsch. Chem., 7, 108 (1886); K. Bhatt and V.K. Agrawal, J. Indian Chem. Soc., 50, 611 (1973).
- 8. J. Singh, Planta Med., 41, 397 (1981).
- 9. R.D. Tiwary and J. Singh, J. Indian Chem. Soc., 54, 429 (1977).
- 10. J. Somogyi, Biochem. J., 19, 195 (1951).

(Received: 21 March 1997; Accepted: 12 June 1997)

AJC-1316