Kinetics of Oxidation of Cycloheptanol by Os(VIII) Continuously regenerated by Hexacyanoferrate(III) Ions

MUKUL K. SATI, PRATIBHA SINGH, GEETA TEWARY and S.P.S. MEHTA*

Department of Chemistry

D.S.B. Campus of Kumaon University, Nainital-263 002, India

The kinetics of oxidation of cycloheptanol by Os(VIII) continuously regenerated by hexaecyanofarrate (III) ions was studied in the 0.01 M-0.1 M [OH-] range. The rate law derived on the basis of the mechanism suggested was:

$$-\frac{d[Os(VIII)]}{dt} = \frac{2kK_2K_4[cycloheptanol][OH^-][Os(VIII)]_{Total}}{1 + K_2K_4[cycloheptanol][OH^-]}$$

INTRODUCTION

The equilibrium between an alcohol and alkoxide ion in alkaline medium¹ which is usually attained immediately is represented as:

Os(VIII) was continuously regenerated during the oxidation reaction by alkaline hexacyanoferrate(III).

EXPERIMENTAL

Reagents: All the solutions were prepared as reported earlier.^{2,3}

Product Analysis: Cycloheptanone as the final oxidation product was identified by the IR spectral studies and its 2,4-dinitrophenyl hydrazone.

Rate Measurements: As the [Os(VIII)] was kept low the kinetic study was done by measuring the absorbance of the unreacted [hexacyanoferrate(III)] at 420 nm using a spectochem digital MK(II) spectrophotometer.

Stoichiometry.

$$(CH_2)_6CHOH + 2 Fe(CN)_6^{3-} + Os(VIII) + 2OH^-$$

 $\rightarrow (CH_2)_6C = O + 2 Fe(CN)_6^{4-} + Os(VIII) + 2 H_2O$ (1)

RESULTS AND DISCUSSION

A low [Os(VIII)] ensured that it was continuously regnerated during the reaction and therefore could be considered as a catalyst for the oxidation of cycloheptanol by alkaline hexacyanoferrate(III). This presumption (Tables 1-3) was is in agreement with the results reported earlier.³

 $\label{eq:table-loss} TABLE\text{-}I$ DEPENDENCE OF k_0 (mol dm $^{-3}$ s $^{-1}$) ON THE OXIDATION OF CYCLOHEPTANOL BY Os(VIII) AT DIFFERENT TEMPERATURES

Temperature (K)	10 ² [OH ⁻] (mol dm ⁻³)						
	1.0	3.0	5.0	8.0	10.0		
	10 ⁵ k _o (mol dm ⁻³ s ⁻¹)						
298	0.50	0.90	1.50	1.90	2.20		
303	0.70	1.20	1.80	2.70	3.20		
308	0.80	1.70	2.50	3.65	4.50		
313	1.30	2.20	3.40	5.10	6.30		
318	1.60	2.50	3.60	5.80	7.81		

 $^{10^2}$ [cycloheptanol] = 3.0 mol dm⁻³, 10^3 [Fe(CN) $_6^{3-}$] = 1.4 mol dm⁻³, 10^5 [Os(VIII) = 1.179 mol dm⁻³ and μ = 1.0 mol dm⁻³].

TABLE-2
DEPENDENCE OF k₀ ON THE INITIAL [CYCLOHEPTANOL]
AT DIFFERENT TEMPERATURES

Temperature (K)		10 ² [Cyc	loheptanol] (n	nol dm ⁻³)		
	1.5	3.0	6.0	7.5	15.0	
	$10^5 k_0 (\text{mol dm}^{-3} \text{s}^{-1})$					
298	0.39	0.51	0.80	1.10	1.75	
303	0.48	0.78	1.00	1.38	1.81	
308	0.56	0.98	1.21	1.71	2.29	
313	1.10	1.61	2.00	2.78	3.56	
318	1.51	2.01	2.54	3.02	3.88	

 $^{10^3}$ [Fe(CN) $_6^{3-}$] = 1.4 mol dm $^{-3}$, 10^5 [Os(VIII)] = 1.179 mol dm $^{-3}$, 10^2 [OH $^-$] = 1.0 mol dm $^{-3}$ and $\mu = 1.0$ mol dm $^{-3}$.

TABLE-3 DEPENDENCE OF k_0 ON THE INITIAL [Os(VIII)] AT DIFFERENT TEMPERATURES

Temperature (K)		10 ⁵ [C	s (VIII)] (mol	dm^{-3})			
	0.393	1.179	1.965	3.144	3.930		
	$10^5 k_0 \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$						
298	0.20	0.51	0.90	1.42	1.60		
303	0.31	0.80	1.31	2.00	2.41		
308	0.41	1.00	1.90	3.01	3.71		
313	0.60	1.61	2.60	4.01	5.11		
318	0.70	2.01	3.81	5.70	7.31		

 $^{10^3}$ [Fe (CN) $_6^{-3}$] = 1.4 mol dm $^{-3}$, 10^2 [cycloheptanol] = 3.0 mol dm $^{-3}$, 10^2 [OH $^{-}$] = 1.0 mol dm $^{-3}$ and μ = 1.0 mol dm $^{-3}$.

The species of Os(VIII) are well known⁴⁻⁶ in the alkaline medium. Hence the mechanism of the oxidation by Os(VIII) continuously regenerated by hexacyanoferrate(III) in alkaline medium can be given as follows:

$$(CH2)6CHOH + OH- \rightleftharpoons (CH2)6CHO- + H2O$$
(Cycloheptanol) (Alkoxide ion) (2)

$$[OsO_4(OH)(H_2O)]^- + OH^- \rightleftharpoons [OsO_4(OH)_2]^{2-} + H_2O$$
 (3)

$$[OsO_4(OH)(H_2O)]^- + (CH_2)_6CHO^- \rightleftharpoons [OsO_4(OH)(CH_2)_6CHO]^{2-} + H_2O$$
 (4)
(complex)

$$[OsO_4(OH)_2]^{2^-} + (CH_2)_6CHOH \rightleftharpoons [OsO_4(OH)(CH_2)_6CHO]^{2^-} + H_2O$$
 (5)

$$[OsO_4(OH)(CH_2)_6CHO]^{2-} + H_2O \underset{slow}{\rightleftharpoons} [OsO_2(OH)_4]^{2-} + (CH_2)_6C \rightleftharpoons O$$
 (6)

$$[OsO_{2}(OH)_{4}]^{2-} + 2Fe(CN)_{6}^{3-} \xrightarrow{Fast} [OsO_{4}(H_{2}O)_{2}] + 2Fe(CN)_{6}^{4-}$$
 (7)

In view of reactions (2) to (7), the rate of the reaction can be given in terms of the disappearance of Os(VIII).

Hence,

$$-\frac{d[Os(VIII)]}{dt} = k[OsO_4(OH)(CH_2)_6CHO]^{2-}$$
(8)

Since,

$$[OsO_4(OH)(H_2O)]^- = \frac{[Os(VIII)]_{Total}}{1 + K_2[OH^-] + K_2K_4[(CH_2)_6CHOH][OH^-]}$$
(9)

In view of the results obtained it is obvious that,

$$(1 + K_2K_4[(CH_2)_6CHOH][OH^-]) \gg K_2[OH^-]$$
 and $K_2K_4 \gg K_1K_3$.

Hence, utilizing Eq. (9) and the inequalities presumed Eq. (8) can be rearranged, to derive the rate law

$$-\frac{d[Os(VIII)]}{dt} = \frac{kK_2K_4[(CH_2)_6CHOH][OH^-][Os(VIII)]_{Total}}{1 + K_2K_4[(CH_2)_6CHOH][OH^-]}$$
(10)

Utilizing Eq. (7), Eq. (10) can be written as

$$k_0 = -\frac{d[Fe(CN)_6^{3-}]}{dt} = \frac{2kK_2K_4[(CH_2)_6CHOH][OH^-][Os(VIII)]_{Total}}{1 + K_2K_4[(CH_2)_6CHOH][OH^-]}$$
(11)

where k₀ is the pseudo zero order rate constant with respect to hexacyano-

ferrate(III). K_4 and k values could be calculated by plotting k_0^{-1} versus [cycloheptanol]⁻¹ [Fig. 1]. The K_4 , k values and the respective thermodynamic parameters have been reported in Tables 4 and 5.

TABLE-4
TEMPERATURE DEPENDENT K₄ VALUES

Temp (K)	298	303	308	313	318
$K_4 (dm^3 mol^{-1})$	73.77	67.68	53.51	71.76	92.96

TABLE-5
RATE CONSTANT k AND RELATED ACTIVATION PARAMETERS

Temp. (K)	298	303	308	313	318		
Temp. (K) $k (s^{-1})$	0.743	0.938	1.227	1.634	1.675		
$\Delta H \text{ (kJ mol}^{-1}) = 34.685, \Delta S \text{ (J K}^{-1} \text{ mol}^{-1}) = -205.68$							

26·0 (S, low Emp) 12·0 4·0

Fig. 1. k₀⁻¹ Versus [Cycloheptanol]⁻¹ plots for O_s(VIII) Catalyzed Hexacyanoferrate(III) oxidation of cycloheptanol at (O) 25°C, (Δ) 30°C, (●) 35°C, (▲) 40°C and (□) 45°C.

40.0

60.0

20.0

A perusal of the results indicates that Os(VIII), the effective oxidant, is entinuously regenerated during the oxidation reaction. Therefore it can also be concluded that Os(VIII) acts as a catalyst for the oxidation of cycloheptanol by hexacyanoferrate(III) in alkaline medium (Figs. 1 and 2).

ACKNOWLEDGEMENTS

The authors are grateful to Prof C.S. Mathela, Head, Dept. of Chemistry,

Fig. 2. k_0 Versus $[O_s(VIII)]$ plots for the $O_s(VIII)$ catalyzed hexacyanoferrate(III) oxidation of cycloheptanol at (O) 25°, (×) 30°C, (\blacksquare) 35°C, (\square) 40°C and (\triangle) 45°C.

D.S.B. Campus of Kumaon University, Nainital for providing all the necessary facilities for this work. SPSM is grateful to the UGC for the financial assistance.

REFERENCES

- 1. J. Murto, in: S. Patai (Ed.), The Chemistry of Hydroxyl Group, Part 2, Interscience Publishers, London, p. 1087 (1971).
- S.P.S. Mehta and K.S. Dhami, Himalayan Chemical and Pharmacutical Bulletin., 7, 14 (1990).
- 3. S.P.S. Mehta and R.N. Mehrotra, Transition Met. Chem., 16, 402 (1991).
- 4. F. Krauss and D. Wilken, Z. Allg. Chem., 145, 166 (1925).
- 5. W.P. Griffith, J. Chem. Soc., 245 (1964).
- 6. _____, Quart. Rev., 19, 254 (1965).