X-Ray Debye Temperatures in a Series of Organic Haloamines†

H.S. YATHIRAJAN*, K.N. MOHANA, M.S. MADHAVA‡ and R. SOMASHEKAR‡

Department of Studies in Chemistry

University of Mysore, Manasagangotri, Mysore-570 006, India

Using the observed X-ray reflection intensities for eight organic haloamines, namely, chloramine-T, chloramine-B, bromamine-T, bromamine-B, dichloramine-T, dichloramine-B, dibromamine-T and dibromamine-B, we have determined Debye-Waller factors and hence Debye temperatures. The results have been compared and analysed in terms of molecular composition.

INTRODUCTION

Variety of reactions undergone by aromatic sulfonyl haloamines have attracted considerable interest. The lack of structural data on these compounds has been mentioned in review articles^{1, 2} except for the crystal structure³ of chloramine-T. The chemistry of these compounds is due to their ability to act as sources of halonium cations, hypohalite species and N-anions which act as both bases and nucleophiles. As a result, these reagents react with a wide range of functional groups effectively to induce an array of molecular transformations. Organic haloamines have received considerable attention as oxidimetric reagents.

In this paper, we report the Debye-Waller factors, Einstein temperature, specific heat and Debye temperature from X-ray studies of eight organic haloamines. Measurement of X-ray diffraction intensities for these organic haloamines was carried out with the object of extracting the X-ray Debye temperature θ_M using the Debye model where one does not distinguish between the accoustic and the optical branches of the dispersion curves. The Debye temperature is given by the expression

$$B = \frac{6h^2}{pm_a k_B \theta_M} \left(\frac{\phi(x)}{x} + \frac{1}{4} \right)$$
 (1)

where $\phi(x) = \frac{1}{x} \int_{0}^{x} y \, dy / [\exp(y) - 1]$ and $x = \frac{\theta_{M}}{T}$, p is the number of groups, m_{a} is

^{†212}th American Chemical Society Meeting 1996 (Abstract No. 96, Physical Chemistry Division).

[‡]Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570 006, India

the mean molecular weight, k_{B} is the Boltzmann constant, h is the Planck constant and T is the absolute temperature.

Using the Debye-Einstein model, where we have a Debye temperature and an Einstein temperature, the expression⁴ for B is

$$B = \frac{6h^2}{pm_a k_B \theta_M} \left(\frac{\phi(x)}{x} + \frac{1}{4} \right) + \frac{2(p-1)h^2}{pm_a k_B \theta_E} \left(\frac{1}{exp(x_E) - 1} + \frac{1}{2} \right)$$
 (2)

In the classical limit, both have the same linear dependence and separation of these two temperatures is not possible, but it has been observed that Einstein temperature should be 2.5 times smaller than θ_M .

EXPERIMENTAL

Chloramine-T (CAT) (Aldrich, USA) was recrystallized from alcohol. Chloramine-B (CAB) was prepared by the partial chlorination of benzenesulphonamide (Aldrich, USA) in 4 M NaOH for 1 h at 70°C. CAB was recrystallized from methanol⁵. Dichloramine-T (DCT) and dichloramine-B (DCB) were prepared by the chlorination of CAT and CAB solutions respectively and were recrystallized from CCl₄.^{6, 7} Dibromamine-T (DBT) and dibromamine-B (DBB) were obtained by the bromination of CAT and CAB respectively and were recrystallized from CCl₄.^{8, 9}. Bromamine-T (BAT) and bromamine-B (BAB) were obtained by the partial debromination of DBT and DBB in NaOH and were recrystallized from methanol^{10, 11}. The purity of all the compounds was checked by estimating the amounts of active halogen present in them, iodometrically. They were further characterized¹² by their IR spectra, ¹H and ¹³C NMR spectra.

For recording the diffractograms, X-ray diffractometer RIGAKU, Model DMAX-IC (Japan) Cu K_{α} radiation was used. A current of 20 mA and voltage of 39 kV was used for all the samples.

RESULTS AND DISCUSSION

Care was taken for all the samples while recording the X-ray powder diffraction pattern. In all the samples a number of reflections were observed for a 2θ range of 5° to 50° . A typical result for DBB is given in Table-1.

To a first approximation, the Debye-Waller factor (B) was assumed to be same for all atoms in a given molecule, so that we can define a mean value of B for the molecule. With this approximation, the integrated intensity for the molecule is given by

$$I = KL_{P} P(\Sigma f)^{2} \exp \left(-2B \frac{\sin^{2} \theta}{\lambda^{2}}\right)$$
 (3)

Here K is a constant, L_P is Lorentz polarization factor, P the multiplicity factor, θ is the Bragg angle, λ is the wavelength of the X-rays and B is the mean Debye-Waller factor for the corresponding molecule. The atomic scattering factors given in International Table 13 have been used to compute $(\Sigma f)^2$. The average B factors are essential for further X-ray crystal structure analysis.

TABLE-1 20 AND OTHER PARAMETERS FOR DIBROMAMINE-B

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(.)
2 13.764 478 0.0778 -2.2209 3 14.341 728 0.0810 -2.0153 4 15.300 346 0.0864 -2.3026 5 16.187 315 0.0914 -2.3096 6 17.655 297 0.0996 -2.2857 7 18.316 432 0.1033 -2.0983 8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951	Peak	2θ	I(cps)	$\sin \frac{\theta}{\lambda}$	
3 14.341 728 0.0810 -2.0153 4 15.300 346 0.0864 -2.3026 5 16.187 315 0.0914 -2.3096 6 17.655 297 0.0996 -2.2857 7 18.316 432 0.1033 -2.0983 8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575	1	9.281	1232	0.0525	-2.0195
4 15.300 346 0.0864 -2.3026 5 16.187 315 0.0914 -2.3096 6 17.655 297 0.0996 -2.2857 7 18.316 432 0.1033 -2.0983 8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952	2	13.764	478	0.0778	-2.2209
5 16.187 315 0.0914 -2.3096 6 17.655 297 0.0996 -2.2857 7 18.316 432 0.1033 -2.0983 8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436	3	14.341	728	0.0810	-2.0153
6 17.655 297 0.0996 -2.2857 7 18.316 432 0.1033 -2.0983 8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490	4	15.300	346	0.0864	-2.3026
7 18.316 432 0.1033 -2.0983 8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624	5	16.187	315	0.0914	-2.3096
8 19.306 614 0.1088 -1.9098 9 19.644 642 0.1107 -1.8785 10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447	6	17.655	297	0.0996	-2.2857
9	7	18.316	432	0.1033	-2.0983
10 20.181 492 0.1137 -1.9776 11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 <td>8</td> <td>19.306</td> <td>614</td> <td>0.1088</td> <td>-1.9098</td>	8	19.306	614	0.1088	-1.9098
11 21.407 596 0.1206 -1.8523 12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 <td>9</td> <td>19.644</td> <td>642</td> <td>0.1107</td> <td>-1.8785</td>	9	19.644	642	0.1107	-1.8785
12 21.906 420 0.1233 -1.9889 13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 <td>10</td> <td>20.181</td> <td>492</td> <td>0.1137</td> <td>-1.9776</td>	10	20.181	492	0.1137	-1.9776
13 23.433 535 0.1318 -1.8453 14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 <td>11</td> <td>21.407</td> <td>596</td> <td>0.1206</td> <td>-1.8523</td>	11	21.407	596	0.1206	-1.8523
14 23.446 567 0.1319 -1.8101 15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 <td>12</td> <td>21.906</td> <td>420</td> <td>0.1233</td> <td>-1.9889</td>	12	21.906	420	0.1233	-1.9889
15 24.077 401 0.1354 -1.9394 16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 <td>13</td> <td>23.433</td> <td>535</td> <td>0.1318</td> <td>-1.8453</td>	13	23.433	535	0.1318	-1.8453
16 26.837 623 0.1506 -1.6658 17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 <td>14</td> <td>23.446</td> <td>567</td> <td>0.1319</td> <td>-1.8101</td>	14	23.446	567	0.1319	-1.8101
17 27.582 3277 0.1547 -0.9235 18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	15	24.077	401	0.1354	-1.9394
18 28.334 951 0.1589 -1.4375 19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	16	26.837	623	0.1506	-1.6658
19 29.274 575 0.1640 -1.6286 20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	17	27.582	3277	0.1547	-0.9235
20 30.962 952 0.1733 -1.3619 21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	18	28.334	951	0.1589	-1.4375
21 31.794 436 0.1778 -1.6775 22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	19	29.274	575	0.1640	-1.6286
22 32.880 490 0.1837 -1.5967 23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	20	30.962	952	0.1733	-1.3619
23 34.253 624 0.1912 -1.4546 24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	21	31.794	436	0.1778	-1.6775
24 35.956 447 0.2004 -1.5512 25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	22	32.880	490	0.1837	-1.5967
25 36.702 551 0.2044 -1.4417 26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	23	34.253	624	0.1912	-1.4546
26 37.075 422 0.2064 -1.5482 27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	24	35.956	447	0.2004	-1.5512
27 37.631 430 0.2094 -1.5253 28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	25	36.702	551	0.2044	-1.4417
28 38.800 535 0.2156 -1.4023 29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	26	37.075	422	0.2064	-1.5482
29 40.637 344 0.2254 -1.5483 30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	27	37.631	430	0.2094	-1.5253
30 42.983 485 0.2378 -1.3417 31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	28	38.800	535	0.2156	-1.4023
31 43.804 378 0.2421 -1.4292 32 45.642 342 0.2518 -1.4287	29	40.637	344	0.2254	-1.5483
32 45.642 342 0.2518 -1.4287	30	42.983	485	0.2378	-1.3417
	31	43.804	378	0.2421	-1.4292
33 48.168 419 0.2649 -1.2854	32	45.642	342	0.2518	-1.4287
	33	48.168	419	0.2649	-1.2854

It follows from equation (3) that a graphical plot of log $\left[\frac{I}{KL_pP(\Sigma f)^2}\right]$ against $\frac{\sin^2\theta}{\lambda^2}$ is a straight line and the least square method has been used to determine the slope and also the standard deviation from which the temperature factor B is

the slope and also the standard deviation from which the temperature factor B is obtained. Using this value in equation (1) and the published value 14 of W(x) for various x, we have determined θ_M for the Debye model, θ_E for Einstein model and specific heat Debye temperatures θ_D . These are given in Table-2.

Compound B in 10⁻¹⁶ cm² W(x) θ_{E} x θ_{M} T_{m} $\theta_{Theo.}$ θ_{D} 51.34 CAT 18.67 68.61 0.1210 36.30 442 44.65 25.67 CAB 10.56 33.16 0.1740 52.20 445 51.08 36.91 73.82 0.1065 39.55 BAT 20.80 88.53 31.95 443 22.59 45.18 47.85 44.82 BAB 10.61 39.33 0.1595 452 33.83 67.67

42.60

36.50

32.40

41.25

346

347

383

366

45.12

47.50

37.84

35.68

30.12

25.81

22.91

29.17

60.25

51.62

45.82

58.33

0.1420

0.1230

0.1080

0.1375

TABLE-2
TEMPERATURE FACTORS FOR ORGANIC HALOAMINES

Temperature factors in K.

15.75

22.43

19.99

12.83

49.36

66.18

85.86

52.76

DCT

DCB

DBT

DBB

Using cell parameters (V) (obtained from a multidimensional FTN 77 programme SIMPLEX which fits all the observed reflections to within 1% of the mean value) and mean molecular weight (m_a) , the Debye temperature, employing the relation 15

$$\theta_{\text{Theoretical}} = C \left(\frac{T_{\text{m}}}{m_{\text{a}} V^{2/3}} \right)^{1/2} \tag{4}$$

for all the samples have been estimated and these are also given in Table 2. T_m is the melting temperature. It is to be noted that the theoretically estimated Debye temperature ($\theta_{Theoretical}$) is in agreement with the Debye temperature θ_M obtained from the Debye model. The similarities in these compounds are however due less to the crystal structure than to the similarities in the relative magnitudes of the forces between atoms or ions, which is a natural outcome of the results reported here even within the limitations of averaged Debye-Waller factors for the molecule in all the samples.

ACKNOWLEDGEMENT

We thank Prof. N.G. Puttaswamy, Department of Physics, Bangalore University, Bangalore, India, for providing X-ray Diffractometer facilites.

REFERENCES

- 1. D.H. Bremner, J.S. Ed Pizey and Horwood-Wiley, Synthetic Reagents, New York (1985).
- 2. M.M. Campbell and G. Johnson, Chem. Rev., 78, 65 (1978).
- 3. N.M. Olmstead and P.P. Power, *Inorg. Chem.*, 25, 4057 (1986).
- 4. R.D. Horning and J.L. Standenmann, Acta Cryst., A44, 136 (1988).
- 5. A. Chrzaszczewska, Bull. Soc. Sci. Lett., lodz class III, 3, 16 (1952).
- 6. T.J. Jacob and C.G.R. Nair, Talanta, 19, 347 (1972).
- 7. H.S. Yathirajan, D.S. Mahadevappa and Rangaswamy, Talanta, 27, 52 (1980).
- 8. C.G.R. Nair and P. Indrasenan, Talanta, 23, 239 (1976).
- 9. D.S. Mahadevappa and M.S. Ahmed, Talanta, 26, 590 (1979).
- 10. C.G.R. Nair, R.L. Kumari and P. Indrasenan, Talanta, 25, 525 (1978).
- 11. M.S. Ahmed and D.S. Mahadevappa, Talanta, 27, 669 (1980).
- 12. B. Thimmegowda and D.S. Mahadevappa, Talanta, 30, 359 (1983).
- 13. International Tables for X-ray Crystallography, U.K. Kynoch Press, Vol. 1–3 (1969).
- 14. G.C. Benson and E.K. Gill, Table of Integral Functions, Ottawa National Research Council of Canada (1966).
- 15. F. Lindemann, Z. Phys., 1, 609 (1910).

(Received: 30 October 1996; Accepted: 3 February 1997)

AJC-1231