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Momentum Space Properties of Atoms and Molecules

MALA DUTTA*
Department of Chemistry
Sri Venkateswara College, Dhaula Kuan, New Delhi-110 021, India

The determination of structure and properties of biomolecular
systems have opened new concepts in chemistry by obtaining
accurate electron charge densities. For a long time, the density
functional theory has played a major role in predicting the electronic
structures of the above systems. In the light of this, the Analytical
Model Density (AMD) function proposed by L.F. Pacios has been
used to calculate the momentum space properties for representative
elements and their combination in molecular form. The results are
in good agreement with Hartree-Fock estimates. Further, the cusp
condition { A%p)/pr~") has been calculated which is vital in assign-
ing the accurate description of electron density at the nucleus.

INTRODUCTION

Density functional theory (DFT)"2 is basically of electronic ground state
structure, embossed by electronic density distribution p(r). Over the past three
decades, it has become increasingly useful for the understanding and calculation
of ground state density p(r) and energy® (E) of molecules, clusters* and solids, in
other words, any system consisting of nuclei and electrons under applied static
perturbations. Further, the crucial issue of DF applications depends on the quality
of the description of p(r). A number of DF calculations have resorted to numericai
procedures to avoid all the undesired deviations typically associated with basis
sets. The utility of analytical expressions of density function lies in the simplest
way to calculate intrinsic properties of atoms and molecules, which can be further
extended to understand the chemical reaction through exothermicity or
endothermicity.

In the present work, I have used the analytical model density (AMD) function
devised by Pacios™ ¢, which is a very simple representation of Hartree-Fock (HF)
atomic densities’ to calculate the momentum space properties of atoms and
molecules.

. M
D(r)='21 Ajexp (-Bir) M
i=

Long time ago, the Thomas-Fermi method® was used to calculate momentum
space properties of atoms. This self-consistent electron distribution was employed
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as was also the case in the related calculations of the Dirac-Slater exchange energy
of neutral atoms by Scott.” The relation between mean momentum ({p) and

Dirac-Slater exchange energy, both proportional to J‘pm(r) dr has been em-

phasized by Pathak and Gadre.'® They also related (p™') to Ip(r)mdr, which is
directly related to an observable, the maximum in the compton profile. Later,

Allan and March'! showed that the same local density for the mean momentum
also applies to molecules. The general formula is as follows:

2\m/3
(o) =2 [ v gr )

The mean momentum values for m = -1, 2 and -2 have already been published;
the value for m = 3, which in turn, leads to average electron density, has not been
reported yet. So by calculating the average electron density (p), a new energy
expression, established by me, is reported here.

Calculations

In the equation (1), if m is taken as 3, then

=272 [ o o ©)
(p’) = 14.8044(p) )

The integral form in eq. (3) is in fact (p) shown by Hyman et al.'> which is
an experimantally measurable quantity related to the intensity scattered by an
element.

The new energy expression based on mean momentum for ators is,

)
2Z
= 14.8044(p)/2Z 27 = atomic number

Earlier Ray and Tandon'? have shown a very good correlation between {p) and
E, and for molecules, the expression is given below.

Y
mol = 2 EM Zj
i=1

E=

(6)

By extending this idea, the results for the cusp condition is also reported, in
the form of mean momentum values, as (r"'p), (r"2p), (A%p).
The respective simplified forms for various expressions mentioned above are

<r"p>=4n{ AL A DA, } o)
(251) (2132) (Bl + [32)

> A A2 2A.A,
o= 4"[26 28, T +ﬁz>] ®)
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The cusp condition, by definition, is
BD| - 2zp0) (10)
r=0

The new cusp condition results worked out in the present work, on the basis of
momentum space, are

(Vo) 'p)y =22 (11)
(W py =4Z (12)
From equations (11) and (12),
(2 p)/ (A%py=2 (13)
RESULTS AND DISCUSSION

The density functional calculations have been reported by using AMD for
various properties based on momentum space. It can be seen from Table-1 that
the mean momentum energy values are in good agreement with Hartree-Fock
values. The error in terms of percentage is +3.0.

TABEL-1
MEAN MOMENTUM ENERGIES FOR ATOMS (a.u.)

Atom () Eca EfF
Li 3.15 7.52 743
Be 8.34 15.10 14.57
B 17.39 25.21 24.52
C 31.92 38.02 37.68
N 51.81 54.51 54.40
(0} 79.92 74.20 74.81
F 117.76 98.50 99.41
Ne 166.73 126.70 128.54

2 See Reference 7.

Recently, in one of his papers, Pacios put forward the idea of using partitioned
density function for molecules, but no results along this line have been reported.
So I tried to extend this work to molecules on the basis of the assumption adopted
by Zanasi and Lazzeretti.'* Their approach was based on the assumption that in
some manner, it is possible to resolve the electron density in the multi-centre
molecular problem into the sum of atomic-like localized electron density func-
tions. The results have been reported in Table-2. It is interesting to note that the
calculated values by AMD are in good agreement with HF. Though the results
obtained for simple molecular systems are not very encouraging but by modifying
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the density function with some physically significant parameters, this can be
improved.

TABLE-2
MEAN MOMENTUM ENERGIES FOR MOLECULES (a.u.)

System {P)m Ecal EfF
OH 81.1956 66.7800 —
HF 119.0828 88.1500 100.0
HCl 995.4027 409.3428 —
CH 32.3084 34.1647 —
NH 52.8255 48.8781 —
PH 043.1526 297.5465 —
CO 208.5857 110.2857 112.7
LiH 3.6598 6.7726 —
BF 217.1896 114.8345 124.2
BeH, 9.7950 12.0841 —
H,O 73.7381 54.5824 76.1

2 See Reference 15.

TABLE-3
CUSP CONDITION, EQUATIONS 11 AND 12, FOR THE AMD

(’p) (V’p)

System (8%) (r’'o) (r’*p) o) o) Cusp®
Li 104.11 17.94 20704 1.9 5.80 5.80
Be 50551  64.29 100342 198 7.86 7.86
B 166001  167.09 328457 198 9.93 9.94
c 433385 36071 854233 197 12.01 12.03
N 969848 68801 1903938  1.96 14.10 14.12
0 1942345 120073 3797440  1.96 16.18 1622
F 3577143 196001  69648.54 195 1825 18.33
Ne 6160549 303652  119632.00  1.94 2032 2045
Na 10077408 443409 19340232 198 273 —
Mg 15768629 633637 302011.97 1.9 24.89 —
Al 24160043  8941.11  459541.90  1.98 27.02 —
Si 35767563 1237471  680721.32 197 28.90 —

51325074 1658272  974447.03 196 3325 —
s 71823067 2172470 135904670  1.96 33.06 —
a 983632.58 27932.81 1853664.00  1.95 3521 —

2 See reference 6.
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For any molecule, its electronic structure requires that it should satisfy the
cusp condition, which is important to understand the electron density at the
nucleus. In view of this, the mean momentum values can be used to check it. The
results are reported in Table-3. It can be seen from the comparison that from Li
to Cl elements the value of the cusp is very close to 2.0. This is a new concept
by which the cusp can be understood through momentum space.

Conclusion

The present study opens a new chapter in understanding the electronic concepts
of atoms and molecules through momentum space. My next step in this direction
will be to calculate the heat of formation of chemical reactions by using mean
momentum expression.
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