Synthesis and Pharmacological Screenings of Some N¹-Substituted Phenyl-N³-(2'-substituted indole-3'-methine) Thioureas†

A.R. SAUNDANE*, G. PRAYAGRAJ, S.H. RANGANATH and K. RUDRESH Department of Chemistry, Gulbarga University, Gulbarga-585 106, India

Various N¹-substituted phenyl-N³-(2′-substituted indole-3′-methine) thioureas were synthesised from respective 2-substituted indole-3-carboxaldehyde and 4-substituted phenylthioureas. The compounds were screened for thier various pharmacological properties, viz., analgesic, anti-inflammatory, oxytocic and anthelmentic activities.

INTRODUCTION

Indole and its derivatives have occupied a unique place in the chemistry of nitrogen heterocyclic compounds because of their wide spectrum of biological activities. In continuation of our research¹⁻⁴ for pharmacologically potent indole derivatives, we report here the synthesis of some new N¹-substituted phenyl-N³-(2'-substituted indole-3'-methine) thioureas and their pharmacological activities.

2-Substituted indole-3-carboxaldehydes (**Ia, b**) obtained by the Vilsmier-Haack formylation reaction conditions in POCl₃ and DMF, were reacted with 4-substituted phenyl-N³-(2'-substituted indole-3'-methine) thioureas (**III a-f**). The formation of these compounds was confirmed by their IR spectral data. In the spectra, these compounds displayed absorption bands 3450–3400 cm⁻¹ due to $\nu(NH)$, 1620 cm⁻¹due to $\nu(C=N)$ and 1300 cm⁻¹ due to $\nu(C=S)$ functional groups, respectively.

EXPERIMENTAL

Melting points were determined in open capillaries and are uncorrected. The IR spectra were recorded in nujol on a Hitachi 270–50 IR spectrophotometer.

Preparation of N¹-Substituted Phenyl-N³-(2'-substituted indole-3'-methine) thioureas (IIIa-f)

A mixture of 2-substituted indole-3-carboxaldehyde⁵ (**Ia**, **b**) (0.001 mole) and substituted aryl thioureas (**IIa-c**) (0.001 mole) was refluxed in anhydrous ethanol on water bath for 3 h. The reaction mixture was cooled and decomposed in ice

[†]Presented at the 16th Indian Council of Chemists Conference, at Mangalore University, 29–31 December, 1997.

TABLE-1
PHYSICAL DATA OF THE COMPOUNDS SYNTHESISED

nd (Calc.)	Z	13.59 (13.65)	4.33 (4.37)	13.41 (13.46)	10.90 (10.96)	11.38 (11.43)	10.79 (10.86)
Elemental analysis %, Found (Calc.)	Н	4.85 (4.89)	5.11 (5.17)	3.83 (3.90)	4.93 (4.98)	5.14 (5.18)	4.11 (4.17)
Elemental	S	66.01	69.62 (69.65)	61.34 (61.38)	71.68 (71.73)	74.79 (74.86)	67.86 (67.92)
Mol G	MOI. IOIIIIIII	C ₁₇ H ₁₅ N ₃ SO	$C_{17}H_{15}N_3S$	C ₁₆ H ₁₂ N ₃ SCI	$C_{23}H_{19}N_3SO$	$C_{23}H_{19}N_3S$	C ₂₂ H ₁₆ N ₃ SCI
Notite	Nature	grey crystals	orange crystals	light orange crystals	grey crystals	colourless crystals	colourless crystals
Vield (@)	(w)	61.60	54.40	40.10	82.30	91.40	60.70
000	()) ·d·iii	198–200	172–173	152–154	191–193	163–164	111–112
tituents	\mathbb{R}^{1}	ОСН	CH_3	Ū	осн3	СН3	ū
Subs	æ	Н	Н	н	Ph	Ph	Ph
Comp No.		Ша Н	IIIb	IIIc	IIId	IIIe	IIIf

TABLE-2
PHARMACOLOGICAL ACTIVITIES OF SYNTHESISED COMPOUNDS

Compd No		Analgesic activity	c activi	ty	Antiinflammatory	Oxytocic activity	Anthelmintic activity, time (min) ta paralysis (P) and death (D)	Anthelmintic activity, time (min) taken for paralysis (P) and death (D)
Company of	React	Reaction time (sec) after 60 min	Ractic	after Raction time (sec) after 120 min	l	standard in %	Ь	D
IIIa	5.15		6.65*	6.65* (± 0.03)	0.77† (± 0.06)	85.71	182.50	252.50
IIIb	5.40		5.75*	(± 0.08)	0.595† (± 0.04)	97.22	195.00	215.00
IIIc	5.38	(± 0.02)	8.20	(± 0.32)	0.35† (± 0.04)	122.58	99.33	123.00
IIId	8.57*	(± 0.04)	6.13*	(±0.20)	0.55†† (± 0.04)	91.52	l	1
IIIe	6.65*	(± 0.56)	5.40*	(± 0.02)	$0.69 + (\pm 0.13)$	88.80	405.00	465.00
IIIf	4.65	(± 0.03)	6.23*	(± 0.10)	0.47†† (± 0.02)	101.03	33.00	44.50
Standard [§]	5.86	(± 0.01)	5.95	(± 0.06)	0.23 (± 0.05)	100:00	48.00	00:99
Control	3.40	3.40 (± 0.07)	2.75	(± 0.07)	0.57 (± 0.06)	-	Live I	1

*P < 0.001, †P < 0.01, ††P < 0.5

\$Standard for: Analgesic activity—Analgin
Antiinflammatory activity—Phenyl butazone

Oxytocic activity—Oxytocin

Anthelmentic activity-Piperazine citrate

cold water. The solid thus separated was filtered, washed with water and crystallized from benzene to get (IIIa-f) (Table -1).

Pharmacological Activities

Analgesic activity: Tail-flick method⁶ was adopted for the evaluation of analgesic activity. The compounds were tested at a dose of 30 mg/kg body weight of Albino rats, using analgin as standard. Compounds (IIIa-f) exhibited promising activity as compared to that of standard analgin, during 60 and 120 min (Table-2).

Antiinflammatory activity: Antiinflammatory activity of compounds (IIIa-f) was evaluated according to the reported method⁶ using formalin induced paw odema test in rats. The compounds were tested at a dose of 30 mg/kg body weight of rat using phenyl butazone as standard. The compound IIIc exhibited promising antiinflammatory activity, compound IIIf showed moderate activity, whereas other compounds were found to be inactive (Table-2).

Oxytocic activity: Compounds IIIa-f were tested for their in vitro oxytocic activity on an isolated Albino rat uterus according to literature method⁷. Oxytocin was used as standard and the compounds were tested at concentration of 10 µg/mL. The compound IIIc exhibited good oxytocic activity, whereas compounds IIIa, IIIb, IIId and IIIe inhibited the oxytocic activity when tested along with oxytocin and compound IIIf was inactive (Table-2).

Anthelmentic Activity: Anthelmentic activity of compounds (IIIa-f) was carried out against Pherituma postuma by following the reported procedure8, using piperazine citrate suspension (2 mg/mL) as standard. Only the compound IIIf exihibited strong anthelmentic activity, where as all other compounds either moderately active or inactive (Table-2).

860 Saundane et al. Asian J. Chem.

ACKNOWLEDGEMENT

The authors are thankful to Dr. Y.S. Agasimudin, Professor and Chariman, Department of Chemistry, Gulbarga University, Gulbarga for providing laboratory facilities.

REFERENCES

- 1. S.P. Hiremath, D.M. Hiremath and M.G. Purohit, *Indian J. Chem.*, 23B, 930 (1984).
- S.P. Hiremath, K.M.K. Swamy and B.M. M. Mruthyunjayaswamy, *Indian J. Microbiol.*, 32, 57 (1992).
- 3. S.P. Hiremath, A.R. Saundane, H.K.H. Swamy and B.H.M. Mruthyunjayaswamy, *Indian J. Heterocyclic Chem.*, **3**, 37 (1993).
- 4. Renukadevi Patil, J.S. Biradar, S.P. Hiremath and S.Y. Manjunath, *Indian J. Heterocyclic Chem.*, 7, 277 (1997).
- 5. J.S. Biradar, Ph.D. Thesis, Gulbarga University, Gulbarga (1982).
- S.K. Kulkarni, in: Handbook of Experimental Pharmacology, 1st Edn., Vallabh Prakashan, Delhi, p. 72 (1987).
- M.N. Ghosh, Fundamentals of Experimental Pharmacology, 2nd Edn., Scientific Book Agency, Calcutta, p. 92 (1984).
- 8. K.N. Giand, R.N. Dar, B.M. Chopra and R.N. Kaul, Indian J. Pharm., 27, 141 (1965).

(Received: 2 March 1998; Accepted: 9 June 1998) AJC-1500