NOTE

Synthesis, Characterization and Antibacterial Studies of Co(II), Ni(II) and Cu(II) Schiff Base Complexes derived from Ethyl-methyl Ketone

A.P. MISHRA* and MAHIMA KHARE

Inorganic Research Laboratories Chemistry Department, Dr. Harisingh Gour Vishwavidyalaya, Sagar-470 003, India

Complexes of Co(II), Ni(II) and Cu(II) with Schiff base formed by condensation of 2-aminophenol and ethyl-methyl ketone have been synthesized and their physico-chemical properties have been investigated by microanalytical, UV-Vis, IR spectral, conductance, TGA and magnetic measurements. The ligand field parameters of the complexes have also been calculated. The antibacterial activities have been tested. The complexes are of general formulae [MLCl₂(H₂O)₂]·2H₂O and [ML(H₂O)₂]·Cl₂·2H₂O.

Schiff base metal complexes have been a widely studied because of their industrial and biological importance¹. 2-Aminophenol derived compounds show some properties of antimicrobial and pharmacological importance. The present investigation aims at the synthesis, structural and antimicrobial studies of some life-essential 3d-metal ion chelates of ethyl-methyl ketone 2-aminophenol Schiff base.

All the chemicals used were of AR grade.

Synthesis of ligand: The ligand ethyl-methyl ketone-2-aminophenol (Schiff base) was synthesized by adding methanolic solution if ethyl-methyl ketone (4.34 mL) to methanolic solution of 2-aminophenol (5 g) (1:1 ratio). The reaction mixture was stirred and then refluxed on water bath for about 5–6 h. The coffee brown condensation product was washed and recrystallised in methanol (m.p. 70°C); (% yield 60%).

Preparation of metal complexes: Metal chelates were synthesized by adding methanolic solution of the appropriate metal salt (MCl₂·nH₂O) to a methanolic solution of Schiff base (in 1:1 ratio) and the resulting mixture was refluxed on a water-bath for about 4–5 h. A coloured precipitate appeared on cooling the solution. It was filtered, recrystallised with methanol, washed in petroleum ether and dried under reduced pressure over anhydrous CaCl₂ in a desiecator and then in an oven at 80°C. The complexes are air-stable, non-hygroscopic and soluble in DMF and acetone.

Physical measurement: Melting/decomposition point have been determined on a melting point apparatus (Toshniwal, India). Electronic spectra (in MeOH

634 Mishra et al. Asian J. Chem.

solution) were recorded on a Perkin-Elmer Spectrophotometer in the region 400-900 nm.

The purity of compounds was monitored by TLC on silica plates. The TGA of only one complex was done at RSIC Nagpur in air (as atmosphere) at a heating rate of 20°C min⁻¹.

TABLE-1								
ANALYTICAL AND MAGNETIC DATA OF THE COMPLEXES								

Compound Molecular formula	m.w. m.p. (dec.) (°C)	Elemental analysis % found (calcd.)				μ _{eff}	Λ _m
[Colour]		С	Н	N	М	B.M.	cm ² mol ⁻¹
C ₁₀ H ₁₃ NO (ligand) [Coffee brown]	163.00 (70.1)	73.0 (73.6)	7.80 (7.97)	8.48 (8.58)			
[Co(C ₁₀ H ₁₃ NO)Cl ₂ (H ₂ O) ₂]2H ₂ O [Dark brown]		32.56 (32.88)	5.68 (5.75)	3.78 (3.83)	16.10 (16.08)	5.02	25.00
$[Ni(C_{10}H_{13}NO)Cl_2(H_2O)_2]\cdot 2H_2O$ [Dark brown]	365.70 (210)	32.16 (32.90)	5.67 (5.75)	3.76 (3.83)	16.12 (16.09)	2.97	17.00
$ \begin{split} & [Cu(C_{10}H_{13}NO)(H_2O)_2] \cdot Cl_2 \cdot 2H_2O \\ & [Blackish\ brown] \end{split} $	369.50 (220)	32.48 (32.47)	5.63 (5.68)	3.67 (3.78)	17.05 (17.18)	1.89	112.00

The analytical data of the complexes show that the metal to ligand stoichiometry is 1:1. The conductivity data (in methanol, 10^{-3} M) suggest non-electrolytic nature of the $\mathrm{Co^{2+}}$ and $\mathrm{Ni^{2+}}$ complexes while the $\mathrm{Cu^{2+}}$ complex shows 1:2 electrolytic nature.

The IR spectrum of the ligand shows a strong band at 1588 cm⁻¹ due to $\nu(C=N)$ group. On chelation this azomethine group shifts to lower frequency side (1580 cm⁻¹) indicating the participation of this group in chelation.^{2,3} The characteristic phenolic band which appeared at 1389 cm⁻¹ $\nu(C-H)$ and 1272 cm⁻¹ $\nu(C-D)$ in the spectra of ligand (base) shifts at 1405 cm⁻¹ and 1305 cm⁻¹ in the complexes. This suggests participation of phenolic group in complexation. The presence of water molecules within coordination sphere is supported by the appearance of bands at 3436 ± 20 cm⁻¹ (br) and 760 ± 25 cm⁻¹ (sharp), attributable to stretching and rocking mode respectively. The new bands at 550–500 cm⁻¹ and 450–400 cm⁻¹ in the corresponding metal complexes have tentatively been assigned to $\nu(M-N)$ respectively.

The electronic spectra of the Co(II) complex shows two bands at 17869 cm⁻¹ (v_2) and 19546 cm⁻¹ (v_3). The values of 10 Dq, B, β , v_2/v_1 and LFSE are 10160 cm⁻¹, 952 cm⁻¹, 85, 2.31, 114.6 kJ mol⁻¹ respectively. This is in fair agreement with the literature values for octahedral geometry.^{5,6} The Ni(II) complex shows three bands at 11123 cm⁻¹ (v_1), 17211 cm⁻¹ (v_2) and 23584 cm⁻¹ (v_3). The values of 10 Dq, B, β , v_2/v_1 and LFSE are 11123 cm⁻¹, 495 cm⁻¹, 0.45, 1.54, 160.7 kJ mol⁻¹ respectively, suggesting an octahedral geometry. The Cu(II) complexes gives two bands at 12121 cm⁻¹ and 18115 cm⁻¹, suggesting the square-planar geometry. The observed magnetic

moment values for the Co(II), Ni(II) and Cu(II) complexes are as 5.02, 2.97 and 1.89 B.M. respectively.⁷

Thermogram of copper complex shows a loss in weight corresponding to two lattice water molecules, which occurs up to 210°C (% wt. loss 9.00/9.74). On increase of temperature upto 290°C, a further loss in weight has been observed. This corresponds to two molecules of coordinated water (% wt. loss 17.00/19.48). The thermal degradation of the dehydrated metal chelate begins on heating above 290°C, and the pyrolysis curves exhibit this process to complete roughly in two steps. A constant weight thermal curve has been observed after 450°C. The remaining percentage weight in this horizon is 20.00/19.35 which corresponds to metal oxide.

Antibacterial activity: All the three compounds and base (ligand) have been evaluated for their antibacterial activities against *Bacillus Subtilis*, *Salmonella typhi* and *Escherichia coli* at concentration 25 and 50 ug/mL by agar growth technique. 8 Cu²⁺-complex shows more activity than Co(II) and Ni(II) complex (Cu > Co \simeq Ni). Metal complexes exhibited more activity than the Schiff base alone.

REFERENCES

- 1. M.N. Hughes, Inorganic Chemistry of Biological Processes, Wiley, New York (1981).
- B.B. Mahapatra, M.K. Raval, A.K. Behera and A.K. Das, J. Indian Chem. Soc., 72, 161 (1995).
- 3. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley-Interscience, New York (1986).
- Vibhuti Shrivastava, S.K. Srivastava and A.P. Mishra, Proc. Nat. Acad. Sci. (India), 65A, 247 (1995).
- B.N. Figgis, Introduction to Ligand Field Theory, 2nd edn., Wiley Eastern Ltd., New Delhi, p. 52 (1976).
- G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, Vol. 2, Pergamon, New York (1987).
- 7. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd edn., Elsevier, Amsterdam (1984).
- 8. M. Purohit and S.K. Srivastava, J. Indian Chem. Soc., 68, 163 (1991).

(Received: 11 December 1997; Accepted: 17 February 1998) AJC-1460