NOTE

Quinoline-4-yl-Hydrozino-Quinazolines as Antitubercular/ Antibacterial Agents. Part-II

PRATIBHA DESAI*, DINESH PATEL†, JITEN NAIK† and C.M. DESAI

Department of Microbiology

B.P. Baria Science Institute, Navsari-396 445, India

In the present note, the synthesis and antibacterial activity of quinazoline-4-yl-hydrozinoquinazolines are reported.

In continuation of our work on hydrazino-quinolines, we communicate quinoline-4-yl-hydrazino-quinazolines as antitubercular/antibacterial agents in this paper.

Dimethyl-2-chloro-quinazolines have been condensed with dimethyl quinolinyl hydrazines in prsence of glacial acetic acid as solvent giving dimethyl-quinoline-4-yl hydrazino-dimethyl-quinazolines. Dimethyl-2-chloroquinazolines have been prepared from dimethyl-2-hydroxy-quinazolines by using phosphorus oxychloride by the known method, while 2-hydroxy-quinazolines \rightleftharpoons 2(1H)-quinazolinones were prepared by cyclisation of acetyl-aryl ureas in presence of acetic anhydride and sulphuric acid with potassium iodide for the first time.²

These products were tested against Mycobacterium tuberculosis H₃₇Rv using Middlebrook agar medium³ and against Staphylococcus aureus, Escherichia coli and Salmonella paratyphi-B using Bryant's method.⁴

Synthesis of 4-8 dimethyl-2-(1H) quinazolinone: The mixture of 2-methyl phenyl urea (15 g, 0.1 M) and acetic anhydride (25 mL) was heated in presence of potassium iodide (1.0 g) till the solution was made clear. Then H_2SO_4 (15 mL) was carefully added to the hot solution; the heat of reaction was sufficient for cyclisation. The mixture was poured on ice and neutralized with ammonium hydroxide; the product obtained was crystallised from ethanol. mol. wt. 174, yield 62% and m.p. 254°C (dec).

Dimethyl-quinolin-4-yl hydrazines were prepared by refluxing hydrazines with 4-chlororoquinolines in butanol by the known method.

Synthesis of 2-(2',8'-dimethyl-quinoline-4'-yl-hydrazino)-4,8-dimethyl-quinazoline: The mixture of 4,8-dimethyl-2-chloro-quinazoline (0.01 M) and 2,8-dimethyl-quinolinyl hydrazine (0.01 M) was refluxed for 6 h using glacial acetic acid (20 mL). After treating the mixed solution with ice, it was neutralised and

[†]Artemis Research Centre, Themis Chmicals Ltd., Vapi-396 195, India.

626 Desai et al. Asian J. Chem.

Structure I*

the product separated was crystallised from ethanol. Yield 48%, m.p. (dec) 257° C, m.w. 343, N% = (calcd) 20.39: (found) 20.36.

Similarly other quinolinyl hydrazino quinazolines were prepared (for details vide Table-1 and Structure II).

TABLE-1
ANTITUBERCULAR/ANTIBACTERIAL ACTIVITY OF THE COMPOUNDS

Sr. No.						m.p. (°C)	Activity against (µg/mL)					
	Compound				Yield (%)		H ₃₇ Rv		S. aureus E. coli		Sal.	
	R	R_1	R ₂	СН3		(dec)	5	10	5	5	paratyphi-B 5	
	•								(Zone size in mm)			
1.	CH ₃	Н	Н	8	48	257	+	-	18	9.5	16	
2.	Н	Н	CH ₃	8	50	262	++	+	11	8	18	
3.	Н	CH ₃	Н	8	52	267	++	++	10.5	8	6	
4.	OCH ₃	Н	Н	8	50	246	+	+	10.5	8.5	6	
5.	Н	OCH ₃	Н	8	53	250	_	_	10.5	8	6	
6.	CH ₃	Н	Н	5	43	260	+	+				
7.	Н	Н	CH ₃	. 5	48	259	+++	+++				
8.	н	CH ₃	Н	5	50	268	+++	++		_		
9.	OCH ₃	Н	Н	5	44	243	++	++	12	6	6	
10.	Н	OCH ₃	Н	5	48	248	++	-	11	10	9.5	
11.	CH ₃	Н	Н	6	. 54	259	+	-				
12.	Н	Н	CH ₃	6	58	270	++	_				
13	Н	CH ₃	Н	6	55	264	-	_				
14.	OCH ₃	Н	Н	6	54	248	-	-	20	10	12	
15.	Н	OCH ₃	Н	6	52	235	+	_	22	6	6	

Symbols: "-" = No growth; "+" = Scanty growth; "+" = Moderate growth "+++" = Profuse growth

In the earlier work it was observed that substituents 6- or 8-methoxy and 6-ethoxy or 6-chloro in quinoline nucleus enhance the antibacterial activity in agreement with 6-methoxy substitution in quinoline antimalarial such as quinine, primaquine and pentaquinine imparting increased activity; however it was not possible to establish a correlation between antibacterial and antitubercular activity.

In quinolinyl-imino sulfa drugs also, 6- or 8-methoxy substitution enhances antibacterial activity. In the present work also it is observed that —OCH₃ substitution in quinoline ring enhances increased antibacterial activity against Staphylococcus aureus and Salmonella paratyphi-B. Regarding antitubercular activity, three products inhibit growth of $H_{37}Rv$ at 5 μ g/mL and five at 10 μ g/mL, —OCH₃ substitution increasing the activity.

ACKNOWLEDGEMENT

The authors are grateful to Dr. P.K. Desai, Director, Span Research Centre for antitubercular data and Shri Shantilal Patel, President, Themis Chimicals Ltd., for providing research facilities.

REFERENCES

- 1. Jiten Naik, Dinesh Patel, C.M. Desai and Pratibha Desai, Asian J. Chem., 10, 623 (1998).
- 2. D.C. Tandel, Ph.D. Thesis, South Gujarat University (1993).
- P.K. Desai, Pratibha Desai, Dilip Machhi, C.M. Desai and Dinesh Patel, *Indian J. Chem.*, 35B, 871 (1996).
- 4. M.C. Bryant, Antibiotics and Laboratory Control, Butterworths, p. 26 (1968).
- 5. Pratibha Desai, Bhadresh Naik, C.M. Desai and Dinesh Patel, Asian J. Chem. 10, 615 (1998).

(Received: 9 December 1997; Accepted: 17 February 1998) AJC-1457