Kinetic Parameters from TG Analysis of Bis-{2-(o-hydroxyphenyl) Benzoxazolato} Nickel(II) Complex

A.K. SINGH,* A.P. SINHA and K.K. SINGH Department of Chemistry Magadh University, Bodh-Gaya-824 234, India

In the present work, the authors describe the calculation of some kinetic parameters from thermogavimetric analysis of bis-{2-(o-hydroxyphenyl) benzoxazolato} nickel(II) complex.

INTRODUCTION

The rate of thermal decomposition is determined by the rate of one or more of these stages. Sometimes the rate-determining stage at the beginning of the pyrolysis may lose its significance and later another stage can take its place. The decomposition rate of a TG curve can be denoted as $d\alpha/dt$, where α stands for the fraction of the initial compound undergoing reaction. In isothermal conditions it may be presumed that the reaction rate is dependent only on the fraction reacted.

$$-d\alpha/dt = K\alpha^n$$

where n is the order of reaction and K the specific rate constant. The specific rate constant depends upon the temperature by the expression,

$$K = A \cdot e^{-E/RT}$$

where A is the preexponential factor, E the activation energy and R the gas constant.

EXPERIMENTAL

An electrobalance with a recorder operating at 1 mv full scale was used for obtaining the thermograms. A chromelalumel thermocouple placed 3-4 mm below the sample holder, the platinum boat (2 mm × 8 mm dia) was used for recording the sample temperature. A heating rate of 10° min⁻¹ was employed and chart speed was maintained at 600 mm h⁻¹. Calculations were carried out from a single TG curve for the second stage of decomposition of the complex around 330°C. The initial stage corresponded to the elimination of coordinated water.

Preparation of the sample: An aqueous solution of nickel(II) chloride (1.3 g in 10 mL) was diluted with 50 mL of ethanol and filtered. The clear filtrate was added to an ethanolic solution of the ligand (2 g in 50 mL) in 1:2 molar ratio with constant shaking. The little complex was precipitated as a rose crystalline precipitate. A few drops of ammonical ethanol was added to precipitate the

complex completely. The complex was digested on a steam bath and filtered in hot. The complex was washed with ethanol and dried in air. The molecular formula of the complex corresponds to NiL₂·2H₂O.

RESULTS AND DISCUSSION

The kinetic parameters of the complex have been calculated by both Freeman and Carroll method¹ and Zsako method³.

Freeman and Carroll¹ suggested a linear relationship between $\frac{\log (dw/dt)}{\Lambda \log W}$ and

 $\frac{\Delta T^{-1}}{\Delta \log W_r}$ where $W_r = (W_c - W)$ and W_c is weight loss at completion of reaction,

W the total weight-loss up to time t and T the absolute temperature. The intercept -x of the straight line plotted from the evaluated values for the equation indicates the order of reaction and the slope indicates the energy of activatioin E_a to E_/2.3R. The reaction order and the activation energy of the compound have been evaluated as 2.5 and 44.005 Kcal mol⁻¹ for the second transformation stage under consideration.

These values were compared with the method of Doyle² as modified by Zsako³. Doyle's equation for TG curve is

$$g(\alpha) = \frac{ZE_a}{Rq} p(x)$$

where Z is frequency factor, E_a the activation energy, R the gas constant and q the heating rate. The value $g(\alpha)$ is a certain function of and

$$\alpha = \frac{W_0 - W}{W_0 - W_1}$$

where W, W₀ and W₁ are the actual, inititial and final weights of the sample respectively. $g(\alpha)$ is calculated for various orders of decomposition from the equation

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = K(1-\alpha)^{\mathrm{b}}$$

where b is the order of reaction. For b = 0 $g_0(\alpha) = \alpha$, for b = 1, $g_1(\alpha) = \ln\left(\frac{1}{1-\alpha}\right)$ and for b = 2, $g_2(\alpha) = \left(\frac{\alpha}{1-\alpha}\right)$.

The values of B₀, B₁ and B₂ have been calculated in the present case from the equations given herein with the help of the data for $g(\alpha)$ and $-\log p(x)$ at different temperatures; B_0 , B_1 and B_2 are the constancy of the difference log (α) for zero, first and second order reactions respectively, which provide information to suggest a quantitative method for determining the apparent activation energy consistent with a given function $f(\alpha)$.

$$b = 0$$
; $B_0 = \log \alpha - \log p(x)$

$$b = 1; B_1 = \log \left(\ln \frac{1}{1 - \alpha} \right) - \log p(x)$$

$$b = 2; B_2 = \log \left(\frac{\alpha}{1 - \alpha} \right) - \log p(x)$$

and the values of $g(\alpha)$ are given in Table-1;

TABLE-1

Sl. No.	Temp. (°C)	W (mg)	log α	$\log\left(\frac{1}{1-\alpha}\right)$	$\log\left(\frac{\alpha}{1-\alpha}\right)$
1.	300	7.79	-2.5191	-2.5185	-2.5178
2.	310	7.77	-2.2181	-2.2168	-2.2155
3.	320	7.70	-1.7788	-1.7751	-1.7715
4.	330	7.55	-1.4052	-1.3965	-1.3878
5.	340	7.15	-1.0006	-0.9780	-0.9549
6.	350	6.86	-0.8424	-0.8092	-0.7750
7.	360	6.52	-0.7096	-0.6633	-0.6153
8.	370	6.00	-0.5625	-0.4948	-0.4235
9.	380	5.31	-0.4222	-0.3231	-0.2159
10.	390	4.70	-0.3274	-0.1966	-0.0513

 $W_0 = 7.81 \text{ mg}, W_t = 1.20 \text{ mg}$

For quantitative evaluation of the value of $E_{a'}$ the arithmetical mean of B_0 , B_1 and B_2 have been calculated and the standard deviation δ for all the three pre-supposed order of reactions. δ is obtained from the relation

$$\delta = \frac{\sqrt{(B_1 - B)^2}}{r}$$

where B_1 is any value, B their arthmetical mean and r the number of values. The various values for the corresponding B_0 , B_1 and B_2 are listed in Table-2

TABLE-2

$\mathbf{B_0}$		B_1		B_2	
Ea	0	Ea	1	Ea	2
38	0.1617	42	0.1413	44	0.1270
40	0.1553	44	0.1396	46	0.1238
42	0.1555	46	0.1477	48	0.1283

It is apparent from Table-2 that the standard deviations are minimum if the second order reaction is accepted and the value of δ is minimum for $E_a = 30$ Kcal mol^{-1} and corresponds to 0.0946, the value of the arithmetical means, *i.e.*, it corresponds to 11.554.

The frequency factor Z for the solid state kinetics is evaluated as log Z = 6.4536 by means of the relation

$$\log Z = B + \log Rq - \log E_a$$

where q is the heating rate and R the gas constant.⁴

The apparent activation entropy, $\Delta S^{\#}$ is calculated as -30.87 e.u. from the relation

$$\Delta S^{\#} = 2.303 \log (Zh/kT)$$

The value for T in this equation is the temperature T₁ at which the weight-loss is half the total loss during the step of transformation under consideration.

The values of E_a with order of reaction B = 2 by Freeman and Carroll and Zsako are 25.38 and 30.00 kcal mole⁻¹ respectively. The values for E_a, B calculated by the procedures mentioned earlier seem to be in good agreement with each other and thus may be utilised in the study of solid state reaction mechanism.

ACKNOWLEDGEMENTS

The authors are thankful to Prof. E.B. Singh, former Head and Vice-Chancellor, Deptt. of Chemistry, MU, Bodh-Gaya and Prof. J.P. Srivastava, former Head, P.G. Deptt. of Chemistry, M.U., Bodh-Gaya for active help and valuable suggestions.

REFERENCES

- 1. E.S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958).
- 2. C.D. Doyle, J. Appl. Polym. Sci., 5, 285 (1961).
- 3. J. Zsako, J. Phys. Chem., 72, 2406 (1968).
- 4. A.P. Sinha and J.P. Srivastava, J. Indian Chem. Soc., 67, 766 (1990).

(Received: 21 Jule 1997; Accepted: 24 November 1997) AJC-1415