Bioproduction of Alcohol by Ascomycetous Yeast Exposed to Some Chemical Mutagens

S.P. SINGH*, B.K. AMBASTA and NALINI RATHOR†

Department of Chemistry

Magadh University, Bodh Gaya-824 234, India

Mutagenic actions of o-, m-, p-tolyl hydrazine hydrochloride and 2,3,5,6-tetrafluorophenyl hydrazine were studied on fermentative production of alcohol by S. cerevisiae Am-38. It was found that ortho and metatolyl hydrazine hydrochloride greatly influences the production of alcohol while para-tolyl hydrazine hydrochloride and 2,3,5,6-tetrafluorophenyl hydrazine was not encouraging and could increase a slight alcohol in comparison to control.

There has been a considerable interest in the chemistry of mutagenic chemicals and related compounds, because of their biological importance in fermentation process. ¹⁻¹⁴ Recently Singh *et al.* ^{15, 16} studied the influence of a few chemicals on alcoholic ferment *S. cerevisiae* and observed that some chemicals were of great significance for alcoholic fermentation. The present study was undertaken to assess and analyse the bioproduction of alcohol by ascomycetous yeast *S. cerevisiae* Am-38 exposed to some chemical mutagens.

Composition of the production medium for 100 mL flask each was as follows: Molasses: 25% (w/v), Malt-extract: 0.375%, Yeast-extract: 0.375%, Peptone: 0.515%, pH: 4.9 ± 0.1 . Temperature: 29 ± 1 °C. (pH of the medium was adjusted by adding requisite amount of lactic acid.)

Assay methods: Estimation of the alcohol formed and molasses left unfermented was made colorimetrically by McCloskey & Replogle¹⁷ method and Dubois¹⁸ method respectively.

Sterilization: In an autoclave at 15 lbs. steam pressure for 30 min.

Inoculum: 0.05 mL yeast suspension of S. cerevisiae Am-38.

Age of the Inoculum: 36 h (0.05 mL dose).

Incubation periods: 25, 45 and 75 h. Optimum incubation period: 45 h.

The results obtained in the study of the influence of some mutagenic chemicals on bioproduction of alcohol by *S. cerevisiae* Am-38 are tabulated in Table-1.

The results obtained are tabulated in Table-1. From the data shown in Table-1, it is evident that all the mutagens under trial have different action on bioproduction of alcohol by ascomycetous yeast *S. cerevisiae* Am-38. It was observed that *ortho* and *meta*-tolyl hydrazine hydrochloride greatly influences the bioproduction of alcohol and increases the yield 8.943% and 8.196% respectively in comparison to control in 45 h of optimum incubation period. *p*-tolyl hydrazine

[†]Department of Chemistry, G.B.M. College, Gaya-823 001, India.

hydrochloride also enhances the bioproduction of alcohol but up to 4.368% only while 2,3,5,6-tetrafluorophenyl hydrazine was not encouraging and could increase a slight *i.e.* 2.278% alcohol in comparison to control in the same experimental conditions and optimum incubation period.

TABLE-1
COMPARATIVE ASSESSMENT OF THE INFLUENCE OF DIFFERENT CHEMICAL
MUTAGENS ON BIOPRODUCTION OF ALCOHOL BY S. cerevisiae Am-38 AFTER 45h.
OF OPTIMUM INCUBATION PERIOD

Mutagens used	Optimum concentration of mutagens	Max. yield of alcohol* in mL/100 mL in control	Max. yield of alcohol* in the presence of different mutagens in mL/ 100 mL	% Difference in the yield of alcohol after 45 h of optimum incubation period.
o-tolyl hydrazine hydrochloride	$4.0\times10^{-5}\mathrm{M}$	6.15	6.70	+ 8.9430
m-tolyl hydrazine hydrochloride	$3.0 \times 10^{-5} \text{ M}$	6.10	6.60	+ 8.1967
p-tolyl hydrazine hydrochloride	$2.0 \times 10^{-5} \text{ M}$	6.18	6.45	+ 4.3689
2,3,5,6-tetrafluoro- phenyl hydrazine	$4.0 \times 10^{-5} \text{ M}$	6.16	6.30	+ 2.2727

^{*}mean of triplicate

REFERENCES

- 1. R.W. Thoma, Folia Microbiol., 16, 197 (1971).
- 2. L. Waskell, Mutate Res., 57, 141 (1978).
- 3. A. Nishi, A. Yoshida, M. Moir and N. Sugano, Phytochem., 13, 1653 (1974).
- 4. Z.R. Singh, Genetics, 84, 51 (1976).
- 5. O. Schieder, Mol. Gen. Genet., 149, 251 (1976).
- 6. I.A. Khan, Bot. Bull. Acad. Sci., 25, 103 (1984).
- 7. S.K. Mahna, Indian J. Exptl. Biol., 22, 338 (1984).
- 8. S.P. Singh and K.P. Tiwari, Zbl. Bakt. Il. Abt., 135, 328 (1980).
- 9. _____, Natl. Acad. Sci. Letters, 1, 146 (1978).
- 10. S.P. Singh and S.K. Roy, Acta. Botanica Indica, 12, 185 (1984).
- 11. S.P. Singh, L.K. Sinha, N. Rathor and B.K. Singh, Indian J. Agric. Chem., 21, 43 (1988).
- 12. S.P. Singh, B.K. Singh, C.D. Prasad and A. Suraiya, Columban. J. Life Sci., 1, 31 (1993).
- 13. S.P. Singh, Ajoy Prasad and A. Prasad, Indian J. Agric. Chem., 26, 107 (1993).
- 14. S.P. Singh, Md. Shamim and K.P. Kamal, Indian J. Agric. Chem., 26, 141 (1993).
- S.P. Singh, B. Pratap, B.K. Ambasta, R.K. Pandey, A.C. Sinha and A. Prasad, *Asian J. Chem.*, 6, 753 (1994).
- 16. S.P. Singh, A.K. Brahmachari, M.K. Singh and K.P. Kamal, Asian J. Chem., 9, 157 (1997).
- 17. L.P. McCloskey and L.L. Replogle, Am. J. Enol. Vitie, 25, 194 (1974).
- M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, *Anal. Chem.*, 28, 350 (1956).

⁺ve values indicate % increase in the yield of alcohol. Experimental deviation: ± 1.5-2.5%.