Kinetic Parameters from TG Analysis of Bis-{2-(o-hydroxy phenyl) Benzimidazolato} Cobalt(II) Dihydrate Complex

A.K. SINGH*, A.P. SINHA and K.K. SINGH Department of Chemistry Magadh University, Bodh-Gaya-824 234, India

In the present paper we have reported some kinetic parameters from TGA of bis{2-(o-hydroxyphenyl) benzimidazolato} cobalt(II) dihydrate complex.

INTRODUCTION

The rate of thermal decomposition is determined by the rate of one or more of these stages. Sometimes the rate-determining stage at the beginning of the pyrolysis may lose its significance and later another stage can take its place.

The decomposition rate of a TG curve can be denoted as $d\alpha/dt$, where α stands for the fraction of the initial compound undergoing reaction. In isothermal conditions it may be presumed that the reaction rate is dependent only on the fraction reacted.

$$-d\alpha/dt = K\alpha^n$$

where n is the order of reaction and K the specific rate constant. The specific rate constant depends upon the temperature by the expression

$$K = Ae^{-E/RT}$$

where A is the pre-exponential factor, E the activation energy and R the gas constant. In the present work, some kinetic parameters from thermogravimetric analysis of bis-{2-o-hydroxy(phenyl) benzimidazolato} cobalt(II) dihydrate complex are presented.

EXPERIMENTAL

An electrobalance with a recorder operating at 1 mv full scale was used for obtaining the thermograms. A chromelalumel thermocouple placed 3–4 mm below the sample holder, the platinum boat (2 mm \times 8 mm dia), was used for recording the sample temperature. A heating rate of 10°C min⁻¹ was employed and chart speed was maintained at 600 mm h⁻¹. Calculations were carried out from a single TG curve for the second stage of decomposition of the complex around 330°. The initial stage corresponded to the elimination of coordinated water.

Preparation of the sample

An aqueous solution of cobalt(II) chloride (1.3 g in 10 mL) was diluted with

50 mL of ethanol and filtered. The clear filtrate was added to an ethanolic solution of the ligand (2 g in 50 mL) in 1:2 molar ratio with constant shaking. The little complex was precipitated as a rose crystalline precipitate. A few drops of ammonical ethanol were added to precipitate the complex completely. The complex was digested on a steam bath and filtered in hot. The complex was washed with ethanol and dried in air. The molecular formula of the complex corresponds to CoL₂·2H₂O.

RESULTS AND DISCUSSION

The kinetic parameters of the complex have been calculated by both Freeman and Carroll method and Zsako method.

Freeman and Carroll¹ suggested a linear relationship between $\log \frac{dw/dt}{\Delta \log W}$.

and
$$\frac{\Delta T^{-1}}{\Delta \log W_r}$$
, where $W_r = (W_c - W)$ and W_c is weight loss at completion of

reaction, W the total weight-loss up to time t and T the absolute temperature. The intercept -x of the straight line plotted from the evaluated values for the equation indicates the order of reaction and the slope indicates the energy of activation E_a to $E_a/2.3R$ The reaction order and the activation energy of the compound have been evaluated as 1.72 and 25.3897 kcal mol⁻¹ respectively for the second transformation stage under consideration.

These values were compared with the method of Doyle² as modified by Zsako². Doyle's equation for TG curve is

$$g(\alpha) = \frac{ZE_a}{Rq} p(x)$$

where Z is frequency factor, E_a the activation energy, R the gas constant and q the heating rate. The value $g(\alpha)$ is a certain function of α and

$$\alpha = \frac{W_0 - W}{W_0 - W_1}$$

where W, W_q and W_t are the actual, initial and final weights of the sample respectively. $g(\alpha)$ is calculated for various orders of decomposition from the equation

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \mathrm{K}(1-\alpha)^{\mathrm{b}}$$

where b is the order of reaction. For b=0 $g_0(\alpha)=\alpha$, for b=1, $g_1(\alpha)=\ln\left(\frac{I}{1-\alpha}\right)$ and for b=2, $g_2(\alpha)=\left(\frac{\alpha}{1-\alpha}\right)$.

The values of B_0 , B_1 and B_2 have been calculated in the present case from the equations given herein with the help of the data for $g(\alpha)$ and $-\log p(x)$ at different temperatures. B_0 , B_1 and B_2 are the constants of the difference $\log (\alpha) - \log p(x)$ for zero, first and second order reactions respectively, which provide information to suggest a quantitative method for determining the apparent activation energy consistent with a given a function $f(\alpha)$.

$$b = 0; \quad B_0 = \log \alpha - p(x)$$

$$b = 1; \quad B_1 = \log \left(\ln \frac{1}{1 - \alpha} \right) - \log p(x)$$

$$b = 2; \quad B_2 = \log \left(\frac{\alpha}{1 - \alpha} \right) - \log p(x)$$

and the values of $g(\alpha)$ are given in Table-1.

TABLE-1

S. No.	Temp. °C	W mg	log α	$\log\left(\frac{1}{1-\alpha}\right)$	$\log\left(\frac{\alpha}{1-\alpha}\right)$
1.	330	7.00	-2.5198	-2.5191	-2.5185
2.	340	6.97	-2.1218	-2.1202	-2.1185
3.	350	6.93	-1.8666	-1.8636	-1.8606
4.	360	8.86	-1.6167	-1.6114	-1.6061
5.	370	6.80	-1.4784	-1.4711	-1.4637
6.	380	6.72	-1.3437	-1.3337	-1.3235
7.	390	6.60	-1.1976	-1.1834	-1.1691
8.	400	6.49	-1.0965	-1.0785	-1.0603
9.	410	6.35	-0.9947	-0.9718	-0.9484
10.	420	6.20	-0.9070	-0.8786	-0.8496
11.	430	5.80	-0.7344	-0.6910	-0.6460

Initial weight = 7.02 mg, Final weight = 0.40 mg.

For quantitative evaluation of the value of E_a the arithmetical mean of B₀, B_1 and B_2 has been calculated and also the standard deviation δ for all the three pre-supposed orders of reaction. The value of δ is obtained from the relation

$$\delta = \frac{\sqrt{(B_1 - B)^2}}{r}$$

where B₁ is any value, B their arithmetical mean and r the number of values. The various values for the corresponding B₀, B₁ and B₂ are listed in Table-2.

TABLE-2

B_0		B ₁		B ₂	
Ea	0	Ea	1	Ea	2
26	0.1119	28	0.1011	28	0.1024
28	0.1014	30	0.0975	30	0.0946
30	0.1017	32	0.1032	32	0.0968

It is apparent from Table-2 that the standard deviations are minimum if the second order reaction is accepted and the value of δ is minimum for $E_a = 30$ kcal mol⁻¹ and corresponds to 0.0946, the value of the arithmetical mean, i.e., it corresponds to 11.412.

244 Singh et al. Asian J. Chem.

The frequency factor Z for the solid state kinetics is evaluated as $\log Z = 6.4536$ by means of the relation

$$\log Z = B + \log Rq - \log E_a$$

where q is the heating rate and R the gas constant.

The apparent activation entropy $\Delta S^{\#}$ is calculated as -30.87 e.u. from the relation

$$\delta S^{*2} = 2.303 \log (Zh/kT)$$

The values for T in this equation is the temperature T_1 at which the weight-loss is half the total loss during the step of transformation under consideration.

The values of E_a with order of reaction b = 2 by Freeman and Carroll and Zsako are 25.38 and 30.00 kcal mole⁻¹ respectively.

The values for E_a, b calculated by the procedures mentioned earlier seem to be in good agreement with each other and thus may be utilised in the study of solid state reaction mechanism.

ACKNOWLEDGEMENTS

The authors are thankful to Prof. E.B. Singh, former Head and Vice Chancellor, Deptt. of Chemistry, Magadh University, Bodh-Gaya and Prof. J.P. Srivastava, former Head, P.G. Deptt. of Chemistry, Magadh University, Bodh-Gaya for active help and valuable suggestions.

REFERENCES

- 1. E.S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958).
- 2. C.D. Doyle, J. Appl. Polym. Sci., 5, 285 (1961).
- 3. J. Zsako, J. Phys. Chem., 72, 2406 (1968).
- 4. A.P. Sinha and J.P. Srivastava, J. Indian Chem. Soc., 67, 766 (1990).

(Received: 29 May 1997; Accepted: 20 October 1997) AJC-1372