NOTE ## Synthesis of 3,5-Diaryl-1-Pyridoyl Pyrazoles MISS V.B. TAYDE* and V.S. JAMODE Department of Chemistry Amravati University, Amravati-444 602, India Some of the new 3,5-diaryl pyrazoles have been synthesized by a novel method. 2-Aroyl acetophenones with isoniazide in alcohol medium containing a little piperidine produces 3,5-diaryl-1-pyridoyl pyrazoles. Structures of these compounds have been established by spectral analysis. (IR, UV and NMR). Hydroxychalcones are reported¹ to react with hydrazine hydrate to give pyrazoles. Pyrazoles are usually synthesized by the action of hydrazine on 1,3-dicarbonyl compounds.² Pyrazoles have been prepared by catalytic dehydration of pyrazolines.³ From the references we have not observed the synthesis of 3,5-diaryl-1-pyridoyl pyrazoles directly from 2-aroyloxy acetophenones. It was therefore thought to use such short route for synthesis of pyrazoles. Pyrazoles are known for their versatile physiological activity.⁴ Pyrazoles have been reported to possess herbicidal activity⁵, fungicidal activity⁶, antibacterial activity⁷, antimicrobial activity.⁸ Pyrazoles have also been found to be antidiabetic⁹, pesticide¹⁰ and hypolipidemic agent.¹¹ The present work deals with the synthesis of 3,5-diaryl-1-pyridoyl pyrazoles (3) from 2-aroyloxy acetophenones (2) in alcohol medium containing a little piperidine. $$R_1$$ R_2 $COCH_3$ R_2 $COCH_3$ R_3 $COCH_4$ R_3 R_4 $COCH_5$ R_4 R_5 R_6 R_7 $COCH_7$ R_8 R_7 $COCH_7$ R_8 R_8 R_9 Melting points are uncorrected. IR spectra were recorded in Hitachi Japan model 270-50 IR spectrophotometer. NMR spectra were recorded on Bruker AC 188 Tayde et al. Asian J. Chem. 300 NMR spectrophotometer at 300 MHz in CDCl₃. UV-VIS spectra were recorded on Hitachi 320 UV-VIS spectrometer. ## Preparation of 3,5-diaryl-1-pyridoyl pyrazole (3a-3j) Mixture of 2-aroyloxy acetophenones (2) (0.01 M) was refluxed in alcohol (15 mL) containing a little piperidine for about 2 h. Isoniazide (0.02 M) was added to the reaction mixture and further refluxed for about 2 h. Reaction mixture was cooled, diluted with water and acidified with dil. HCl. The solid product obtained was filtered and crystallised from ethanol. A representative sample (3b) shows. IR: V_{max} 1460 cm⁻¹ (C—O), 1600 cm⁻¹ (C—N), 1400 cm⁻¹ (Ar—H), 1240 cm⁻¹ (C—N); NMR: δ2.3 (S, 3H, —CH₃), 3.8 (S, 3H, —OCH₃), 7.2 (S, 1H, —CH), 7.0–10.0 (m, 11H, Ar—H), 10.6 (S, 1H, —OH). UV: λ_{max} 320, 350 nm. Physical characterization data of the series were recorded in Table-1. TABLE-1 PHYSICS CHARACTERSIATION DATA OF SYNTHESIZED COMPOUND (3a-3j) | Compound.
No. | R | R ₁ | R ₂ | R ₃ | Yield
% | m.p.
(°C) | Molecular
formula | N % Found
(Calcd.) | |------------------|-----------------|-----------------|-----------------|------------------|------------|--------------|--|-----------------------| | 3a | Н | Н | CH ₃ | Н | 79 | 220 | C ₂₃ H ₁₇ N ₃ O ₂ | 11.2 (11.4) | | 3b | Н | Н | CH ₃ | OCH ₃ | 83 | 145 | $C_{24}H_{19}N_3O_3$ | 10.1 (10.5) | | 3c | Br | Н | CH ₃ | Н | 67 | 210 | $C_{23}H_{16}N_3O_2Br$ | 9.2 (9.4) | | 3d | Br | Н | CH ₃ | OCH ₃ | 65 | 159 | C ₂₄ H ₁₈ N ₃ O ₃ Br | 8.5 (8.8) | | 3e | Н | CH ₃ | Н | Н | 75 | 190 | $C_{23}H_{17}N_3O_2$ | 11.3 (11.4) | | 3f | Н | CH ₃ | Н | OCH ₃ | 82 | 245 | $C_{24}H_{19}N_3O_3$ | 10.3 (10.5) | | 3g | CH ₃ | Н | Н | Н | 85 | 142 | $C_{23}H_{17}N_3O_2$ | 11.3 (11.4) | | 3h | CH ₃ | Н | Н | OCH ₃ | 76 | 170 | $C_{24}H_{19}N_3O_3$ | 104 (10.5) | | 3i | H _. | Н | Н | Н | 65 | 160 | $C_{22}H_{15}N_3O_2$ | 11.6 (11.8) | | 3j | Н | Н | Н | OCH ₃ | 69 | 142 | C ₂₃ H ₁₇ N ₃ O ₂ | 11.2 (11.4) | ## REFERENCES - 1. T.C. Sharma, M.M. Bokadia and N.J. Reddy, *Indian J. Chem.*, 19B, 228 (1980). - 2. L. Panizzi, Gazz. Chim. (Ital)., 77, 283 (1947). - 3. B. Holla Shivarama and K. Udaga Venkataramana, Chem. Abstr., 114, 23863v (1991). - 4. E. Herman and J. Gablis, Cancer Chemother. Rept., 14, 85 (1961). - 5. Nissan Chem. Ind. Ltd., Chem. Abstr., 102, 220872a (1985). - 6. Beam, Chem. Abstr., 102, 166656t (1985). - 7. L. Ceechi, Chem. Abstr., 102, 21079y (1985). - 8. A.K. Mittal and O.P. Singhal, J. Indian. Chem. Soc., 58, 1089 (1981). - 9. P.L. Anderson and N.A. Paolella, U.S. 454, 399, 979 (Cl. 1424–2730), A 61K31/415 (1982). - 10. Baus, UIF, Reuther, Wolfgang (BASF, A.G.); Chem. Abstr., 113, 172013z (1990). - 11. K. Seki, J. Isegawa, M. Fakuda and M. Ohki, Chem. Abstr., 101, 211032d (1984). (Received: 2 June 1997; Accepted: 22 September 1997)