Synthesis of Azetidinones from 2-Imino-Benzal-4,6-Diaryl Pyrimidines and 2-Imino-Benzal-4,6-Diaryl-5,6-Dihydro Pyimidines and Evaluation of Their Antimicrobial Activity MRS. ANJALI M. RAHATGAONKAR Department of Chemistry Institute of Science, Nagpur-440 001, India N-(2-amino-4,6-diaryl pyrimidine)-4-phenyl-2-azetidinones were prepared from 2-iminobenzal-4,6-diaryl pyrimidines by condensing it with acetyl chloride and triethylamine in benzene. ### INTRODUCTION In continuation of our work¹ on the 2-amino-diaryl-pyrimidines and 2-amino-diaryl-dihydro pyrimidines, the nuclei of prime importance, we now report the synthesis and antimicrobial activity of N-(2-amino-4,6-diaryl pyrimido)-4-phenyl azetidinones (3) and N-(2-amino-4,6-diaryl-5,6-dihydro pyrimido)-4-phenyl azetidinones (4). Literature survey reveals that the azetidinones and their corresponding derivatives have been synthesized by a number of workers²⁻⁴ with different starting material. The biological activity of the β -lactam antibiotics is generally belived to be associated with the chemical reactivity of their β -lactam ring⁵. Azetidinones have been known to exhibit interesting biological activities like anti-inflammatory, sedative, hypnotic and anti-convulsant⁶. This promoted us to synthesise different azetidinones from above said important starting materials (1) and (2). The synthesized compounds were tested for antimicrobial activities by using DMF as solvent against $E.\ coli,\ B.\ subtilis,\ K.\ pneumoniae,\ S.\ aureus.$ At 100 µg/mL compound (3e) was found to show comparable zone of inhibition with penicillin and it was measured in mm. ### **EXPERIMENTAL** All the melting points are uncorrected and taken in open capillaries. The IR spectra (KBr) were recorded on Magna IR 550 Series-II spectrometer. The ¹H NMR spectra were recorded on AC-Brucker 300 MHz spectrophotometer using 5 mm tubes. # **General Procedure** Preparation of N-[4-(2-hydroxy-5-methyl-phenyl)-6-phenyl pyrimido]-4-phenyl 2-azetidinone (3a): (Scheme I; Table-1): A mixture of compound (1) (0.01 mol), acetylchloride (0.01 mol), triethylamine (2 mL) and benzene (10 mL) was taken in RB flask. The reaction mixture was refluxed for 6 h on water-bath. Solvent was evaporated to dryness. The sticky mass was triturated with solvent ether. The resulting powdery mass was recrystallized from ethanol (yield 70%). $$R_{1}$$ OH R_{3} R_{4} $CH_{3}COCI_{3}(C_{2}H_{5})_{3}N_{3}$ R_{2} OH R_{3} R_{4} R_{4} R_{4} R_{2} OH R_{3} R_{4} R_{4} R_{4} R_{5} R_{4} R_{5} R_{5} R_{7} R_{1} R_{4} R_{4} R_{5} R_{5} R_{7} R_{1} R_{4} R_{5} R_{7} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{1} R_{2} R_{3} R_{4} Scheme-I Compound (3a): NMR (CDCl₃ + DMSO-d₆): δ (1.2–1.3, t, 1H, C₃—H), δ (3.2, q, 1H, CHb), δ (3.5, q, 1H, CHa), δ (2.3, s, 3H, Ar—CH₃), δ (7.2–8.2, m, 13H, Ar—H), δ (9.1, s, 1H, Ar—OH). IR (KBr) $v \text{ cm}^{-1}$: 3370 v(Ar--OH), 2677 (CH₂), 1662 v(C--O) lactam, 1620 v(C--N). Preparation of N-[4-(2-hydroxy-5-methyl, phenyl)-5,6-dihydro-6-phenyl pyrimido]-4-phenyl-2-azetidinones (4a) (Scheme-II; Table-1): To the solution of compound (2) (0.01 mol), acetyl chloride (0.01 mol), triethylamine (2 mL) and benzene (20 mL) were added. The reaction mixture was refluxed for 6 h on water-bath. Solvent was evaporated and the sticky mass was triturated with solvent ether. Further it was recrystallized from ethanol to get white crystalline compound (yield: 70%). $$R_1$$ OH R_3 R_4 $CH_3COCI, (C_6 He N, C_6 H_6, \Delta 6-Hours)$ R_2 R_3 R_4 Scheme-II Compound (4a): NMR (CDCl₃ + DMSO-d₆): δ (1.2–1.3, t, 1H, C₃—H), δ (3.2, s, 1H, CHb), δ (3.8, q, 1H, CHa), δ (2.3, s, 3H, Ar—CH₃), δ (6.9–7.9, m, 15H, Ar—H), δ (10.1, 1H, Ar—OH). IR (KBr) $v \text{ cm}^{-1}$: 3370 (Ar—OH), 2677 (CH₂), 1660 v(C=O), 1620 v(C=N). | 1 |) | |---|----------------|---|----------------------|---|----------------------|--------------|------------------------|------------------------|--|---|----------------------|----------------------|----------------------|--|----------------------|---|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|------------------------|--| | | Z | 9.2 | 10.1 | 9.6 | 10.2 | 9.5 | 10.2 | 9.5 | 8.6 | 6.6 | 10.2 | 9.5 | 10.1 | 9.1 | 10.9 | 9.3 | 9.1 | 8.9 | 10.6 | 9.1 | 9.6 | 9.1 | 10.6 | 9.1 | 9.3 | | % Analysis | H | 5.1 | 4.2 | 5.2 | 4.9 | 3.1 | 3.1 | 4.6 | 3.9 | 5.2 | 5.1 | 6.1 | 5.1 | 5.9 | 6.3 | 6.9 | 6.3 | 4.9 | 3.9 | 5.1 | 4.7 | 5.3 | 5.1 | 6.9 | 5.6 | | KED | С | 9.9/ | 75.0 | 77.0 | 72.0 | 72.2 | 73.1 | 75.2 | 72.0 | 70.0 | 76.0 | 0.97 | 75.1 | 76.1 | 78.2 | 78.9 | 77.1 | 72.1 | 73.2 | 75.9 | 73.1 | 75.1 | 77.3 | 76.0 | 74.0 | | CHARACTERISATION DATA OF VARIOUS COMPOUNDS PREPARED m.n. Yield | m.f. | C ₂₆ H ₂₁ N ₃ O ₂ | $C_{26}H_{20}N_4O_6$ | C ₂₇ H ₂₃ N ₃ O ₃ | $C_{26}H_{21}N_3O_3$ | C25H18N3O2CI | $C_{25}H_{17}N_4O_4CI$ | $C_{26}H_{20}N_3O_3C1$ | C ₂₅ H ₁₈ N ₃ O ₃ CI | C ₂₆ H ₂₃ N ₃ O ₂ | $C_{26}H_{22}N_4O_4$ | $C_{27}H_{25}N_3O_3$ | $C_{26}H_{23}N_3O_3$ | ·C ₂₇ H ₂₅ N ₃ O ₃ | $C_{27}H_{24}N_4O_4$ | C ₂₈ H ₂₇ N ₃ O ₄ | $C_{27}H_{25}N_3O_4$ | $C_{25}H_{20}N_3O_2CI$ | $C_{25}H_{19}N_4O_4CI$ | $C_{26}H_{22}N_3O_3CI$ | $C_{25}H_{20}N_3O_3CI$ | $C_{26}H_{22}N_3O_3C1$ | C ₂₆ H ₂₁ N ₄ O ₅ Cl | $C_{27}H_{24}N_3O_4CI$ | C ₂₆ H ₂₂ N ₃ O ₃ Cl | | Yield | (%) | 08 | 02 | 06 | 8 | 82 | 72 | 92 | 70 | 70 | 9 | 08 | 92 | 80 | 70 | 95 | 70 | 8 | 02 | 95 | 9 | 8 | 0/ | 95 | 99 | | MAIAO | (C) | 236 | 220 | 225 | 198 | 190 | 202 | 235 | 210 | 202 | 190 | 210 | 220 | 229 | 240 | 220 | 240 | 215 | 205 | 500 | 212 | 220 | 198 | 218 | 216 | | CIERISATIO | R4 | Н | Н | OCH_3 | НО | Н | Н | OCH_3 | ЮН | Н | Н | OCH_3 | НО | Н | Н | $0CH_3$ | Ю | Н | Н | OCH ₃ | ЮН | Н | Н | OCH ₃ | НО | | 1 ' | R ₃ | Н | NO_2 | Н | Н | | IABLE-I | R2 | Н | Н | Н | Н | H | H | H | Н | Н | Н | Н | Н | OCH_3 | OCH_3 | OCH_3 | OCH_3 | Н | Н | Н | Н | OCH ₃ | OCH_3 | OCH ₃ | OCH ₃ | | i | R_1 | CH_3 | CH_3 | CH_3 | CH_3 | ū | ū | ū | IJ | CH ₃ | CH_3 Ü | Ü | Ü | び | ರ | ū | Ü | ם | | Comp | No. | 3a | 36 | 30 | 3q | 36 | 3f | 3g | 3h | 4a | 46 | 4 | 4 d | 4 | 4f | 4g | 4h | <u>.</u> 4 | <u>.</u> | 4 | 41 | 4m | 4n | 4 | 4p | ## **ACKNOWLEDGEMENTS** The authors are thankful to UGC for Research Grant; Government Medical College, Microbiology Dept., Nagpur for carrying out antimicrobial activity; and National Cancer Institute, Maryland, USA for anitcancer activity. The authors are also thankful to RSIC Nagpur for carrying out IR spectra and Central Instrumentation Centre Laboratory, Chandigarh. #### REFERENCES - 1. Mrs. Anjali M. Rahatgaonkar and B.J. Ghiya, Asian J. Chem., 10, 958 (1998). - 2. R.H. Udupi M. Jeeson and A.R. Bhatt, Indian J. Heterocyclic Chem., 6, 99 (1996). - 3. R.H. Udupi, N. Kasinath and A.R. Bhatt, Indian J. Heterocyclic Chem., 7, 221 (1998). - 4. P. Berheim, Science, 92, 204 (1940). - M.S. Manhas and A.K. Bose, Beta Lactams: Natural and Synthetic, Part 1, Wiley-Interscience, New York, p. 187 (1971). - M. Tandon, P. Kumar, P. Tandon, T.N. Bhalla and J.P. Bharathwal, Acta Pharm. Jugosl., B3, 93 (1963). (Received: 20 February 1999; Accepted: 21 May 1999) AJC-1727