Facile and Convenient Synthesis of Triazolopyridazine Derivatives via 1,3-Dipolar Cycloaddition Reaction of Organic Azides†

SULTAN T. ABU-ORABI*, RAAD AL-HAMDANY, ADNAN ATFAH, AMER A.S. ALI and KHALED ABU-SHANDI Department of Chemistry

Department of Chemistry
Yarmouk University, Irbid, Jordan

1,3-Dipolar cycloaddition reactions of substituted benzyl azides 1a-t and bis (azidomethyl) benzenes 2a-c with dibenzoylacetylene 3 afforded the corresponding 1H-1,2,3-triazole derivatives 4a-t and 7a-c respectively. Reaction of these triazoles 4a-t and 7a-c with hydrazine hydrate in ethanolic solution was found to produce in high yield the corresponding triazolopyridazine and bis (triazolopyridazine) derivatives 6a-t and 9a-c respectively. The structures of the newly synthesized products 4, 6, 7 and 9 were confirmed from their spectral and analytical data.

INTRODUCTION

The chemistry of 1,2,3-triazoles has received much attention because of their large variety of applications. These compounds have been used as fungicides, herbicides, light stabilizers, fluoresent whiteners, optical brightening agents and corrosion retardants¹⁻⁸. Moreover 1,2,3-triazole derivatives show significant antimicrobial cyctostatic, vicrostatic and antiinflamatory characters⁹. The thermal 1,3-dipolar, cycloaddition reaction of organic azides with acetylenic compounds was proved to be the most important route for the synthesis of 1H-1,2,3-triazoles¹⁰⁻¹⁴. Although this method can in principle be applied to different combinations of azides and acetylenes, it requires elevated temperatures which may cause a decomposition of the azides. In order to overcome such problems, such reactions should be carried out on a small scale and at high dilution. On the other hand, the reaction with unsymmetrical acetylenes with azides can in principle give rise to two isomeric triazoles. A comprehensive review on the 1,3-dipolar cycloaddition reaction of azides with different substituted acetylenes can be found in Padwa's work¹⁴.

We have been interested in these reactions since 1986 and few publications concerning the reaction of these azides appeared in the literature^{15–19}.

In the present paper, we describe the cycloaddition reaction of substituted benzyl azides 1a-t and bis(azidomethyl) benzenes 2a-c with dibenzoylacetylene

[†]Based in part on the M.Sc. Thesis of K.H. Abu-Shandi (1995), Yarmouk University, Irbid, Jordan.

3 to form the corresponding triazole derivatives and the reaction of these triazoles with hydrazine to form the triazolopyridazine. To the best of our knowledge, this method of synthesis represents a unique and convenient one for the synthesis of compounds containing the two moieties 1H-1,2,3-triazole and pyridazine in a fused form through the 1,3-dipolar cycloaddition reaction.

RESULTS AND DISCUSSION

The reaction of substituted benzyl azides 1a-t andbis (azidomethyl) benzenes 2a-c with dibenzoylacetylene 3 in boiling ethanol produce the corresponding triazoles 4a-t and 7a-c in good yields as shown in schemes 1 and 2 respectivley. The completion of the reaction was monitored by the disappearance of the azide infrared absorption band in the range 2220–2170 cm⁻¹ in the reaction mixture.

The triazole compounds 4 and 7 were found to be good precursors for the synthesis of triazolopyridazine. Therefore, compounds 4 and 7 when reacted with hydrazine in refluxing ethanol, afforded the corresponding triazolopyridazine and bis(triazolopyridazine) compounds 6 and 9 in excellent yields as shown in schemes 1 and 2. The structures of the newly synthesized products 4, 6, 7 and 9

Scheme 1

were elucidated from their spectral data. The IR spectra of triazoles 4a-t and 7a-c showed a strong absorption in the range 1650-1640 cm⁻¹ due to the (C=O) stretching frequency and a band in the range 1440-1420 cm⁻¹ attributed to N=N stretching frequency. The lower C=O frequency value can be attributed to the conjugation of this group with the phenyl and triazole rings.

In the ¹H-NMR spectra of these triazoles 4a-t and 7a-c, the benzylic protons appeared as a singlet in the range 5.44-6.04 ppm, the aromatic protons appeared as two sets of multiplets in the range 6.63-8.09 ppm and 8.12-8.65 ppm integrating for fourteen and twentyfour protons corresponding to compounds 4a-t and 7a-c respectively. On the other hand, in the ¹³C-NMR spectra the two

776 Abu-Orabi et al. Asian J. Chem.

$$\begin{array}{c} C_{0}II_{3}\\ C_{0}II_{3}\\ C_{0}II_{5}\\ C_{0}II_{5}$$

carbonyl carbons appeared as two singlets at about 186.7 ppm and 184.7 ppm; the benzylic carbon appeared in the range from 50.9–52.9 ppm. furthermore C-4 in the triazole ring appeared in the range 147.0–147.4 ppm. The signal of the vinylic carbon (C-5) could not be assigned since it overlapped with the carbons of the phenyl groups. The analytical and spectral data for the triazoles 4a–t and bis-triazoles 7a–c are given in Tables 1 and 3.

Likewise, the IR spectra of triazolopyridiazine **6a-t** and bis(triazolopyridazine) **9a-c** showed a strong absorption band in the range of 1610–1580 cm⁻¹ assigned to the carbon-carbon double bonds stretching frequency and a band in the range of 1440–1420 cm⁻¹ due to the (N=N) stretching frequency.

In the 1 H-NMR spectra of compounds **6a–t** and **9a–c**, the aromatic protons appeared as a two sets of multiplets in the ranges 8.83–9.01 ppm and 6.15–7.82 ppm. The benzylic protons appeared as a singlet in the range 5.69–6.18 ppm. The protons of the methoxy group attached to the benzene ring in compounds **6b** and **6c** appeared as a singlet at 3.69 and 3.64 ppm respectively. Whereas the protons of the methyl group in compounds **6d–f** appeared as a singlet in the range 2.22–1.96 ppm. The mass spectrum for bis(triazolopyridazine) **9b** showed the molecular ion peak at m/z: 648 (M⁺, 13%), 620 (M⁺-N₂, 25%), 390 (M⁺-C₁₆H₁₀N₄, 8%) and 189 (M⁺-C₃₂H₂₀N₄, 100%). The analytical and spectral data for the triazolopyridazines **6a–t** and bis(triazolopyridazines) **9a–c** are given in Tables 2 and 4.

EXPERIMENTAL

Benzyl and substituted benzyl azides **1a-t** were prepared according to the previously published methods^{19, 20}. Bis (azidomethyl) benzenes **2a-c** were prepared according to our earlier published method¹⁵. Dibenzoylacetylene **3** was prepared from *trans*-1,2-dibenzoylethylene according to previously reported

TABLE-1
ANALYTICAL AND SPECTRAL DATA FOR 1-SUBSTITUTED-4,5-DIBENZOYL-1H-1,2,3-TRIAZOLES (4a-t)

Product	Ç	Yield	Reflux time	m.p.	Elemental analysis (%): found (calcd.)	alysis (%): fo	ound (calcd.)	IR (KBr,	iodo (so a anti-
(m.f.)	ס	(%)	(h)	(C)	သ	Н	z	cm ⁻¹)	H-INIMIK (0, ppm) CDC13
4a	Н	87	S	149–50	75.33	4.32	11.72	1640, 1590,	8.38–8.26 (m, 2H), 7.56–7.17 (m,
$(C_{23}H_{17}N_{3}O_{2})$					(75.19)	(4.00)	(11.44)	1440	13H), 5.64 (S, 2H)
4 p	$4-0$ CH $_3$	98	6	105-07	72.21	4.86	10.44	1650, 1600,	8.38-8.25 (m, 2H), 7.60-7.26 (m,
(C ₂₄ H ₁₉ N ₃ O ₃)					(72.53)	(4.82)	(10.57)	1440	8H), 7.11 (d, 2H, J = 8.8 Hz), 6.63 (d. 2H I = 8.8 Hz), 5.77 (s. 2H)
									3.65 (s, 3H)
4c	3-0CH ₃	80	9	101-03	72.68	4.93	10.30	1650, 1600,	8.38-8.25 (m, 2H), 7.60-6.63 (m,
$(C_{24}H_{19}N_3O_3)$					(72.53)	(4.82)	(10.57)	1440	12H), 5.60 (s, 2H), 3.60 (s, 3H)
4 d	4-CH ₃	79	9	133–35	75.46	5.11	11.40	1645, 1590,	8.36-8.26 (m, 2H), 7.56-6.98 (m,
$(C_{24}H_{19}N_3O_2)$					(75.57)	(5.02)	(11.02)	1440	12H), 5.58 (s, 2H), 2.18 (s, 3H)
4 e	3-CH ₃	83	7	104-05	75.23	4.81	11.32	1650, 1600,	8.39-8.27 (m, 2H), 7.60-6.96 (m,
$(C_{24}H_{19}N_3O_2)$					(75.57)	(5.02)	(11.02)	1440	12H), 5.59 (s, 2H), 2.12 (s, 3H)
4f	2-CH ₃	84	7	149–50	75.83	5.40	10.83	1650, 1600,	8.43-8.31 (m, 2H), 7.62-6.98 (m,
$(C_{24}H_{19}N_3O_2)$					(75.57)	(5.02)	(11.02)	1440	12H), 5.69 (s, 2H), 2.30 (s, 3H)
4g	4-NO ₂	87	7	167–69	96.70	3.83	13.41	1645, 1600,	8.35-8.12 (m, 2H), 8.02 (d, 2H),
$(C_{23}H_{16}N_4O_4)$					(66.99)	(3.91)	(13.59)	1430	7.63-7.21 (m, 10H) 573 (s, 2H)
4h	3-NO ₂	78	œį	139-40	67.32	4.16	13.39	1640,1600,	8.38-8.26 (m, 2H), 8.09-8.01
(C ₂₃ H ₁₆ N ₄ O ₄)					(66.99)	(3.91)	(13.59)	1430	(m,2H) 7.66–7.27 (m, 10H), 5.75
									(3, 211)
ţ.	2-NO ₂	83	6	129–30	66.63	4.01	13.49	1645, 1590,	8.36-8.03 (m, 3H), 7.76-7.19 (m,
$(C_{23}H_{16}N_4O_4)$					(66.99)	(3.91)	(13.59)	1425	11H), 6.04 (s, 2H)

Product	(Yield	Reflux time	m.p.	Elemental analysis (%): found (calcd.)	alysis (%): fo	ound (calcd.	IR (KBr,	Sec. S. Marri
(m.f.)	כ	(%)	(h)	(Ç)	C O	Н	Z	cm ⁻¹)	H-NMK (0, ppm) CDC13
<u>.</u> 4.	4-CI	85	4	120-21	68.90	4.36	10.48	1640, 1600,	8.37-8.25 (m, 2H), 7.60-7.14 (m,
(C ₂₃ H ₁₆ ClN ₃ O ₂)					(68.74)	(4.01)	(10.46)	1425	12H), 5.60 (s, 2H)
*	3-CI	80	7	124-25	68.71	4.27	19.34	1645, 1590,	8.38-8.26 (m, 2H), 7.61-7.10 (m,
$(C_{23}H_{16}CIN_3O_2)$					(68.74)	(4.01)	(10.46)	1435	12H), 5.59 (s, 2H)
4	2-CI	8	∞	145-46	00.69	4.29	10.64	1649, 1590,	8.40-8.28 (m, 2H), 7.67-7.08 (m,
$(C_{23}H_{16}CIN_3O_2)$					(68.74)	(4.01)	(10.46)	1420	12H), 5.59 (s, 2H)
4m	4-Br	06	5	127–28	61.96	3.64	9.28	1640, 1600,	8.37-8.25 (m, 2H), 7.57-7.01 (m,
$(C_{23}H_{16}BrN_3O_2)$					(61.89)	(3.61)	(9.42)	1420	12H), 5.58 (s, 2H)
4n	3-Br	85	4	121–22	62.01	3.87	9.43	1640, 1590,	8.39-8.27 (m, 2H), 7.62-7.01 (m,
(C ₂₃ H ₁₆ BrN ₃ O ₂)					(61.89)	(3.61)	(9.42)	1435	12H), 5,59 (s, 2H)
40	2-Br	11	9	156-157	62.11	3.56	69.63	1640, 1590,	8.41-8.29 (m, 2H), 7.65-7.10 (m,
$(C_{23}H_{16}BrN_{3}O_{2})$					(61.89)	(3.61)	(9.42)	1435	12H), 5.76 (s, 2H)
4p	4-F	98	8	114-15	71.93	4.30	10.77	1660, 1590,	8.35-8.27 (m, 2H), 7.58-6.83 (m,
$(C_{23}H_{16}FN_{3}O_{2})$					(71.69)	(4.16)	(10.91)	1440	12H), 5.60 (s, 2H)
49	3-F	84	∞	111-12	71.89	4.09	10.89	1650, 1600,	8.28-8.22 (m, 2H), 7.59-6.97 (m,
$(C_{23}H_{16}FN_3O_2)$					(71.69)	(4.16)	(10.91)	1440	12H), 5.61 (s, 2H)
4r	2-F	81	∞	159-60	71.60	4.17	10.77	1640, 1590,	8.35-8.29 (m, 2H), 7.47-6.90 (m,
$(C_{23}H_{16}FN_{3}O_{2})$					(71.69)	(4.16)	(10.91)	1440	12H), 5.83 (s, 2H)
4s	2,6-Dichloro	92	∞	190-91	63.34	3.47	09.6	1640, 1590,	8.36-8.26 (m, 2H), 7.44-7.13 (m,
$(C_{23}H_{15}Cl_2N_3O_2)$					(63.30)	(3.44)	(6.63)	1440	11H), 5.87 (s, 2H) ·
4t	2,3,4,5,6-	83	∞	178-79	76–37	6.12	9.53	1730, 1680,	8.65-8.50(m,2H), 7.80-7.06(m,
$(C_{28}H_{27}N_3O_2)$	Pentamethyl				(24.89)	(6.18)	(9.61)	1450	8H), 5.80 (s, 2H), 2.20 (s, 3H),
									1.95 (s, 6H), 1.80 (s, 6H)

TABLE-2 ANALYTICAL AND SPECTRAL DATA FOR 1-SUBSTITUTED BENZYL-4,7-DIPHENYL-1H,1,2,3-TRIAZOLO [4,5,D] PYRIDAZINE (6a-t)

Product	Ö	Yield	Reflux time	m.ç	Elem f	Elemental analysis (%) found (calcd.)	(%)	IR (KBr	¹ H-NMR (8. ppm) CDCl ₃
(m.f.)	1	(%)	(P)	O	၁	н	z	cm_1)	
6a (C ₂₃ H ₁₇ N ₅)	H	78	9	157–58	75.98 (76.03)	4.80 (4.68)	19.28 (19.28)	1590, 1430	8.92–8.85 (m, 2H), 7.60–6.58 (m, 13H), 5.79 (s, 2H)
6b (C ₂₄ H ₁₉ N ₅ O)	4-0CH ₃	92	9	176–77	73.32 (73.28)	4.97 (4.83)	17.60 (17.81)	1600, 1430	8.91–8.83 (m, 2H), 7.64–6.56 (m, 12H), 5.74 (s, 3H), 3.69 (s, 3H)
6c (C ₂₄ H ₁₉ N ₅ O)	3-0CH ₃	83	٧.	138–39	73.29 (73.28)	4.96 (4.83)	17.80 (17.81)	1600, 1440	8.92–8.88 (m, 2H), 7.60–6.15 (m, 12H), 5.77 (s, 2H), 3.64 (s, 3H)
6d (C ₂₄ H ₁₉ N ₅)	4-CH ₃	68	٧	179–80	76.35 (76.39)	5.10 (5.04)	18.48 (18.57)	1590, 1430	8.96–8.84 (m, 2H), 7.60–6.15 (m, 12H), 5.77 (s, 2H), 2.22 (s, 3H)
6e (C ₂₄ H ₁₉ N ₅)	3-СН3	06	٧.	125–27	76.36 (76.39)	5.27 (5.04)	18.63 (18.57)	1600, 1440	8.92–8.84 (m, 2H), 7.65–6.31 (m, 12H), 5.76 (s, 2H), 2.13 (s, 3H)
6f (C ₂₄ H ₁₉ N ₅)	2-CH ₃	82	٧	187–88	76.36 (76.39)	4.90 (5.04)	18.49 (18.57)	1600, 1400	8.99–8.87 (m, 2H), 7.68–7.06 (m, 12H), 5.68 (s, 2H), 1.96 (s, 3H)
6g $(C_{23}H_{16}N_6O_2)$	4-NO ₂	74	4	237–39	67.44 (67.65)	4.13 (3.92)	20.36 (20.59)	1600, 1430	9.07–9.01 (m, 2H), 7.61–7.16 (m, 12H), 6.08 (s, 2H)
6h (C ₂₃ H ₁₆ N ₆ O ₂)	3-NO ₂	68	4	193–95	67.47	4.03 (3.92)	20.36 (20.59)	1580, 1430	9.00–8.95 (m, 2H), 7.65–7.03 (m, 12H), 5.96 (s, 2H)

Product	۳	Yield	Reflux time	m.p.	Elem	Elemental analysis (%) found (calcd.)	(%)	IR (KBR	H-NMR (S. mm) CDCI:
(m.f.))	(%)	(F)	(C)	C	Н	z	cm_ ₁)	
ij	2-NO,	8	4	241-42	67.43	3.95	20.43	1580, 1430	9.01-8.89 (m, 2H), 7.68-7.26
$(C_{23}H_{16}N_6O_2)$					(67.65)	(3.92)	(20.59)		(m, 12H), 6.18 (s, 2H)
(i)	4-CI	81	9	224–25	69.59	4.16	17.46	1590, 1430	8.96-8.90 (m, 2H), 7.60-6.95
$(C_{23}H_{16}CIN_5)$					(69.43)	(4.02)	(17.61)		(m 12H), 5.69 (s, 2H)
6k	3-CI	711	9	161–62	09.69	4.14	17.61	1590, 3430	8.96-8.87 (m, 2H), 7.60-6.40
$(C_{23}H_{16}CIN_5)$					(69.43)	(4.02)	(17.61)		(m, 12H), 5.75 (s, 2H)
19	2-CI	71	9	187–88	69.19	3.90	17.43	1590, 1430	9.01-8.92 (m, 2H), 7.67-6.32
$(C_{23}H_{16}CIN_5)$					(69.43)	(4.02)	(17.61)		(m, 12H), 5.83 (s, 2H)
6m	4-Br	83	4	227–29	62.44	3.69	15.69	1600, 1440	8.92-8.90 (m, 2H), 7.58-6.37
(C23H16BrN5)					(62.44)	(3.62)	(15.84)		(m, 12H), 5.76 (s, 2H)
en en	3-Br	08	4	184-185	62.32	3.55	15.72	1600, 1440	8.96-8.89 (m, 2H), 7.60-6.34
$(C_{23}H_{16}BrN_5)$					(62.44)	(3.62)	(15.84)		(m, 12H), 5.75 (s, 2H)
09	2-Br	11	4	190-91	62.26	3.50	15.64	1580, 1430	9.00-8.89 (m, 2H), 7.67-7.12
(C23H16BrN5)					(62.44)	(3.62)	(15.84)		(m, 12H), 5.78 (s, 2H)
d9	4-F	82	∞	167–68	72.23	4.31	18.10	J600, 1440	9.01-8.85 (m, 2H), 7.64-6.30
$(\bar{C}_{23}H_{16}FN_5)$					(72.44)	(4.20)	(18.37)		(m, 12H), 5.89 (s, 2H)
b9	3-F	62	∞	139-41	72.59	4.09	18.12	1610, 1440	8.96-8.87 (m, 2H), 7.66-6.28
$(C_{23}H_{16}FN_5)$					(72.44)	(4.20)	(18.37)		
6r	2-F	6/	° •	159-60	72.25	4.06	18.39	1580, 1430	9.03-8.90 (m, 2H), 7.70-
(C23H16FN5)					(72.44)	(4.20)	18.37		6.36(m, 12H), 5.80 (s, 2H)
99	2,6-Dichloro	88	ω	256-57	64.00	3.40	16.32	1590, 1430	8.93-8.86 (m, 2H), 7.82-7.25
$(C_{23}H_{15}CI_2N_5)$					(63.89)	(3.47)	(16.20)		(m, 11H), 5.75 (s, 2H)
6t	2,3,4,5,6-	6/	5	235-54	99.77	6.12	16.00	1590, 1430	8.96-8.90 (m, 2H), 7.82-7.25
$(C_{28}H_{27}N_5)$	Pentamethyl				(11.60)	(6.24)	(16.18)		(m, 8H), 5.50 (s, 2H), 2.17 (s,
									6H), 2.10 (s, 6H), 2.07 (s, 3H)

ANALYTICAL AND SPECTRAL DATA FOR 4,4′,5,5′-TETRAKIS (BENZOYL-1,1′-IPHENYLENE BIS(METHYLENE) BIS (TRIAZOLE)] (7a–c) TABLE-3

,						
Product (m.f.)	Ð	Yield (%)	Reflux time (h)	m.p. (°C)	IR (KBr, cm ⁻¹)	¹ H-NMR (8, ppm) CDCl ₃
7a (C40H ₂₈ N ₆ O ₄)	отно	08	10	142–44	1650, 1440	8.27–8.24 (m, 4H), 7.53–7.04 (m, 20H), 5.44 (s, 4H)
7b (C ₄₀ H ₂₈ N ₆ O ₄)	meta	84	10	87–90	1640, 1440	8.26–8.23 (m, 4H), 7.64–7.06 (m, 20H), 5.50 (s, 4H)
7c (C ₄₀ H ₂₈ N ₆ O ₄)	para	83	10	152–53	1650, 1440	8.35–8.28 (m, 4H), 7.53–7.05 (m, 20H), 5.45 (s, 4H)

ANALYTICAL AND SPECTRAL DATA FOR 4,4',7,7',TETRAPHENYL-1,1'-[PHENYLENE BIS (METHYLENE) BIS (1H-1,2,3-TRIZOLO [4,5-D]PYRIDAZINE] (9a-c) TABLE-4

¹ H-NMR (8, ppm) CDCl ₃		1600, 1440 8.98–8.90 (m, 4H), 760–7.20 (m,	20H), 5.76 (s, 4H)	9.01-8.87 (m, 4H), 7.67-7.23 (m,	20H), 5.80 (s, 4H)	9.03-8.90 (m, 4H), 7.76-7.31 (m,	20H), 5.81 (s, 4H)
R .	(cm _)	1600, 1440		1610, 1440		1610, 1440	
is (%)	Z	21.34	(21.60)	21.50	(21.60)	21.83	(21.60)
Elemental analysis (%) found (calcd.)	Н	4.51	(4.32)	4.50	(4.32)	4.55	(4.32)
Elen	၁	74.37	(74.07)	74.23	(74.07)	74.22	(74.07)
m.p. (°C)		126-28		120-22		304-05	
Reflux time (h)		1				_	
Yield	(%)	85		87		8	
Ö		ortho		meta		para	
Product	(IIII)	9a	$(C_{40}H_{28}N_{10})$	9 b	$(C_{40}H_{28}N_{10})$	96	(C ₄₀ H ₂₈ N ₁₀)

782 Abu-Orabi et al. Asian J. Chem.

method^{21, 22}. Trans-1,2-Dibenzoylethylene was purchased from Fluka Company and was used without further purification. Melting points were determined on electrothermal melting point apparatus and are uncorrected. Infrared spectra were recorded on a Pye-Unicam SP-300 Spectrophotometer. Proton and carbon-13 nuclear magnetic resonsnace spectra were recorded on a Bruker WP 80 SY Spectrometer using tetramethylsilane as an internal standard. Elemental analyses were performed at M-H-W Laboratories, Phoenix, Arizona, USA.

General procedure for the synthesis of triazoles 4a-t

To an ethanolic solution of substituted benzyl azides 1a-t (5 mmol) in 50 mL ethanol, 1.17 g (5 mmol) of dibenzoylacetylene 3 was added. The resulting mixture was heated under reflux for the time indicated in Table-1. After removal of the solvent under reduced pressure, the residue was recrystallized from ethanol-petroleum ether (60–80°C). All the triazoles obtained 4a-t are new compounds. (Table-1).

General procedure for the synthesis of triazole 6a-t

To a solution of the triazoles **4a-t** (5 mmol) in 50 mL ethanol, 0.50 g (15 mmol) of hydrazine hydrate was added. The resulting mixture was heated under reflux for the time indicated in Table-3. After the solvent was removed under reduced pressure, the resulting solid was recrystallized from ethanol-petroleum ether (60–80°C). According to this procedure compounds **6a-t** were prepared. (Table-2).

General procedure for the reaction of bis(azidomethyl) benzenes 2a-c with dibenzoylacetylene 3: Synthesis of compounds 7a-c

The bis(azidomethyl) benzenes **2a-c** (0.94 g, 5 mmol) were dissolved in ethanol (50 mL); 2.34 g (10 mmol) of dibenzoylacetylene **3** was added to the solution. The resulting mixture was heated under reflux for 10 h. The solvent was distilled off under reduced pressure. The crude bis(triazoles) were recrystallized from ethanol-petroleum ether (60–80°C). Three bis(triazoles) **7a-c** were prepared. Their analytical and spectral data are presented in Table-3.

General procedure for the reaction of tetrakis (benzoyl) bis (triazoles) 7a-c with hydrazine hydrate: Synthesis of compounds 9a-c

To a solution of bis(triazoles) **7a-c** (1.64 g, 2.5 mmol) excess of hydrazine hydrate was added. The resulting mixture was heated under reflux for 1 h. After the solvent was removed under reduced pressure, the resulting solid was recrystallized from ethanol-petroleum ether (60–80°C). The analytical and spectral data for bis(triazolopyridazines) **9a-c** are listed in Table-4.

ACKNOWLEDGEMENT

We thank Yarmouk University for financial support of this work.

REFERENCES

- 1. G. Holmewood, K.H. Buechel, P. Reinecke and G. Haenssler, German Patent 3, 510, 411 (1986); Chem. Abstr., 106, 14714e (1987).
- 2. S.A. Inke, Spanish Patent 548, 092 (1986); Chem. Abstr., 106, 67321f (1987).
- 3. E. Imai, T. Ikeda and H. Fukomoto, Japanese Patent 61, 138, 260 (1986); Chem. Abstr., 106, 25783c (1987).
- 4. C. Luethyl and R. Zurflueh, European Patent 202, 321 (1987); Chem. Abstr., 106, 138455r (1987).
- 5. M.M. Al-Abdallah and S.T. Abu-Orabi, Korrosion, 22, 150 (1991).
- 6. A.I. Abdulhadi, M.Sc. Thesis, King Fahd University of Petroleum and Minerals, Saudi Arabia (1995).
- 7. A.M.S. Abdennabi, A.I. Abdulhadi, S.T. Abu-Orabi and H. Saricimen, Corrosion Science, 38, 1791 (1996).
- 8. A.M.S. Abdennabi, A.I. Abdulhadi and S.T. Abu-Orabi, Anti-corrosion Methods and Materials, 45, 103 (1998).
- 9. Tatsuta Electric Wire and Cable Co. Ltd., JPN, Kotai, Tokkio Koho, 81, 22884 (1981); Chem. Abstr., 96, 56656 (1982).
- 10. R. Huisgen and H. Blaschke, Chem. Ber., 100, 3485 (1967).
- 11. D.S. Breslow, Azides and Nitrenes, p. 491 (1984).
- 12. R.E. Harmon, R.A. Earl and S.K. Gupta, J. Org. Chem., 36, 2553 (1971).
- 13. G. Labbe, J.E. Galle and A. Hassner, Tetrahedron Lett., 11, 303 (1970).
- 14. A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, Wiley, New York, p. 559 (1984).
- 15. S.T. Abu-Orabi and R.E. Harmon, J. Chem. Eng. Data, 31, 399 (1986).
- 16. S.T. Abu-Orabi, M.A. Atfah, I. Jibril, F. Marii and A.A.S. Ali, J. Heterocyclic Chem., 26, 1461 (1989).
- 17. _____, Gazzetta Chimica (Italiana), 121, 397 (1991).
- 18. _____, Gazzetta Chimica (Italiana), **122**, 29 (1992).
- 19. A.A.S. Ali, M.Sc. Thesis, Yarmouk University, Jordan (1990).
- 20. H. Henkel and F. Weygand, Chem. Ber., 76, 812 (1943).
- 21. C. Paal and H. Schulze, Chem. Ber., 33, 3795 (1900).
- 22. R.E. Lutz and W.R. Smithey (Jr.), J. Org. Chem., 16, 51 (1951).

(Received: 2 December 1998; Accepted: 1 March 1999) AJC1698