NOTE

Synthesis and Antibacterial Activity of Some Carbamoylphenoxy Derivatives of S-Triazine

PRATIBHA DESAI*, A.C. CHAMPANERI† and K.R. DESAI†

Department of Microbiology

B.P. Baria Science Institute, Navsari-396 445, India

2-(2'-Carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-aryl-ureido compound has been condensed with S-triazine and substituted with nitro, methyl, methoxy and chloro groups at various positions in aryl ureido group and their antibacterial activity has been screened.

S-triazine and phenyl urea possess a wide spectrum of biological activity $^{1-5}$. In the present study the compounds have been synthesized by condensing salicylamide cyanuric chloride, m-toluidine and nitro, methyl, methoxy and chloro ureas obtain more active compounds using known method. All the product complexes were screened *in vitro* for their antibacterial activity against the gram-positive Staphylococcus aureus and gram negative E. coli using $50 \, \mu g/mL$ concentration. It was found that all modified compounds were inhibitory to gram negative bacteria but not the other group, except 2' and 4' methyl phenyl ureido compounds.

A reaction solution containing salol 25 g and 25% ammonia (100 mL) were stirred for 16–20 h until the smell of ester disappeared. The solution was then acidified with 50% sulfuric acid. This salicylamide was used to synthesize carbamoyl-phenoxy triazine derivatives as shown in Table-1.

All the compounds (50 μ g/mL) were screened for their antibacterial activity against *staphylococcus aureus* and *E. coli* which are gram positive cocci and gram –ve rods Respectively, using mueller-hinton agar as described by Kirby Bauer method⁶. Basic standard drugs were used as control⁷, *viz.*, ampicillin and streptomycin.

[†]Department of Chemistry, South Gujarat University, Surat-395 007, India

TABLE-1 SEQUENCIAL STEPS FOR THE SYNTHESIS OF CARBAMOYL PHENOXY COMPOUNDS

Step	Reactant (concentration)	Condition	Product	Purification	
1.	Salicylamide + cynuric chloridd (0.01 M) (0.01 M) (1.37 g) (1.84 g)	e Stirred in acetone at 0-5°C for 2 h at neutral pH	Comp. A*	Cooled, filtered, dried and crystal- lized from absol. alcohol	
2.	Compound A + m-toluidine (0.01 M) (0.01 M) (2.35 g) (1.072 g)	Stirred in acetone at 35°C and neutral pH for 2 h allowing rising temperature up to 45°C in cold H ₂ O	Comp. B†	As above	
3.	Compound B + phenyl urea (0.01 M) (0.01 M) (3.55 g) (1.36 g)	Refluxed in water bath at 80-90°C for 3 h at neutral pH	Comp. 1‡	As above	
4.	Compound B ^b + corresponding phenyl urea (0.01 M) (0.01 M in dioxane)	As above	Comp. 2 to 10‡	As above	

^{*2-(2&#}x27;-carbamoyl phenoxy)-4,6-dichlorotriazine

Table-2 shows the chemical, physical and antibacterial data of the compounds, IR spectra of the compounds showed C₃N₃ stretching vibrationsat 810-800 cm⁻¹, secondary amines —NH bending vibrations at 1530-1520 cm⁻¹, —C—NH₂ bending vibrations at 1540 cm⁻¹, C—O—C stretching vibrations at 1250-1240 cm⁻¹ and substituted ureas (C=O) stretching vibrations at 1600 cm^{-1} .

The control drugs ampicillin (10 µg/mL) and streptomycin (5 µg/mL) show 22.0 mm and 20.0 mm respectively against E. coli and 26.0 mm and 13.0 mm against S. aureus respectively which is according to NCCLS standard⁷. The maximum zone was recorded for 4'-methoxy group substituted compound against E. coli, while in case of S. aureus with 4'-methyl substituted compound. The screening results showed the possibility of these compounds as drugs.

^{†2-(2&#}x27;-carbamoyl phenoxy)-4-(2'-methyl anilino-6-chlorotriazine

[±]Vide Table-2

660 Desai et al. Asian J. Chem.

TABLE-2
CHARACTERIZATION AND ANTIBACTERIAL DATA OF COMPOUNDS

Compound	Mol. formula	m.p. (°C)	A N %	ntibacterial activity (E. coli)	zone (in mm) (S. aureus)
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(phenylureido)-S. triazine	C ₂₄ H ₂₁ O ₃ N ₇	155	21.49	12.0	6.0
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(3'-nitro PU)-S. triazine	C ₂₄ H ₂₀ O ₅ N ₈	167	22.35	8.5	6.0
2-(2'carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(4'-nitro PU)-S. triazine	C ₂₄ H ₂₀ O ₅ N ₈	174	22.38	10.0	7.0
$\begin{array}{l} \hbox{2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(2'-methyl PU)-S. triazine} \end{array}$	C ₂₅ H ₂₃ O ₃ N ₇	188	20.83	6.0	6.5
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(3'-methyl PU)-S. triazine	C ₂₅ H ₂₃ O ₃ N ₇	182	20.88	6.0	7.0
$\hbox{$2$-(2'-carbamoyl-phenoxy)-$4$-(3'-methyl anilino)-$6$-(4'-methyl PU)-$S$. triazine}$	C ₂₅ H ₂₃ O ₃ N ₇	187	20.85	9.0	7.5
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(2'-methoxy PU)-S. triazine	C ₂₅ H ₂₃ O ₄ N ₇	147	20.16	11.0	7.0
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(4'-methoxy PU)-S. triazine	C ₂₅ H ₂₃ O ₄ N ₇	169	20.14	14.0	6.5
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(2'-chloro PU)-S. triazine	C ₂₄ H ₂₀ O ₃ N ₇ Cl	167	19.99	14.0	6.0
2-(2'-carbamoyl-phenoxy)-4-(3'-methyl anilino)-6-(3'-chloro PU)-S. triazine	C ₂₄ H ₂₀ O ₃ N ₇ Cl	189	20.01	11.0	6.5

Symbol: PU = phenyl ureido

REFERENCES

- D.N. Mehta, C.V. Deliwala, M.H. Shah and V.K. Sheth, Aech. Intern. Pharmatodyn, 138, 480 (1962).
- 2. C.J. Barer, Ger. Offen., 2, 423 (1960).
- 3. Ciba Ltd, Brit. Pat. 1956, 745071; Chem. Abstr., 8814 (1957).
- 4. P.J. Cranfield, Ger. Pat. (1975); Chem. Abstr., 86 (1977).
- 5. M.P. Dave, J.M. Patel, N.A. Langalia and K.A. Thakar, J. Indian Chem. Soc., 61, 237 (1984).
- 6. A.W. Bauer, W.M. Kirby, J.C. Sherris and M. Turck, Amer. J. of Clin. Path., 44, 493 (1966).
- National Committee for Clinical Laboratory Standards, Approved Standard ASM-2, Vollanova (1988).