A Comparative Study of Synthesis, Characterisation and Applications of 5-(Salicylidene) Rhodanine and 5-(2-Hydroxy naphthalidene) Rhodanine

(Ms.) RITA VAJPAI, B.M.L. TIWARI* and K.S. TIWARI

Department of Chemistry

Govt. Model Science (Autononous) College, Rewa-486 001, India

Rhodanine (I) has been refluxed separately with salicylaldehyde and 2-hydroxy napthaldehyde to get 5-substituted rhodanine derivatives (II-III). Their characterisation has been done by chemical and spectral data. The derivatives (II-III) have shown distinctive antibacterial, antifungal and antitubercular activity; and are able to act as specific spot-test and chromatographic spray reagents. Their insecticidal activity has been determined with respect to mortality of mosquito larvae, anopheles and culex sp.

INTRODUCTION

5-Substitued rhodanine derivatives are known¹ for their multiplex analytical and pharmaceutical properties such as fungicides, herbicides, bactericides, aldose reductase, anti-viral, anti-inflammatory and anti-cancerous. Inspired with these findings a systematic study of synthesis, characterisation and applications of some 5-substituted rhodanine derivatives of the type II–III has been undertaken. The III seems to have not been explored.

EXPERIMENTAL

All chemicals used were of AR grade. The rhodanine (I) was prepared as per reported literature². m.pts. were determined on Gallen Kamp apparatus and are uncorrected. Elemental analysis (C, H, N) was carried out on a Heraues Carlo Erba 1108 elemental analyser. Sulphur was estimated by Messenger's method and molecular weights were determined by Rast method. The IR (KBr), electronic (DMF + DMSO) and ¹H NMR (CDCl₃ + DMSO-d₆/TMS) spectra were recorded on Perkin-Elmer 1800 (FTIR), Shimadzu UV-160-PC-controlled and Varian EM-360L spectrophotometers respectively.

5-(Salicylidene) rhodanine (II): A mixture of salicylaldehyde (1.3 mL) and rhodanine (1.33 g) in glacial acetic acid (15 mL) was refluxed on a water bath for 4.5 h, then cooled. The resulting dark yellow solid was crystallised from glacial acetic acid to obtain orange-yellow crystals; yield: (1.5 g, 55.5%); m.pt. 210°C; [Found: C, 50.12; H, 3.08; N, 6.02; S, 26.67%. Calcd: C, 50.63; H, 2.95; N, 5.90; S, 27.0%]; [Mol. wt.: found, 236; required, 237]; v_{max}: 4000–3640, 1420, 1240 (OH); 3040, 1340, 1280 (NH); 1700 (C=O); 1480 (mercaptamide); 1175, 780 (C=S); and 1100, 1080, 1020, 900, 880, 820 (Ar) cm⁻¹; λ_{max} : 269, 302, 393 nm; δ: 2.85 (OH), 6.80–7.80 (Ar, H, C=CH), 7.95 (NH); R_f: Ag⁺, 0.16 (reddish); Pb²⁺, 0.079 (yellow); Cu²⁺, 0.21 (brown) and Cd²⁺, 0.73 (orange).

5-(2-Hydroxy naphthalidene) rhodanine (III): The procedure adopted for its preparation was similar to that of II with the difference that 2-hydroxy naphthaldehyde (1.72 g) was used and the refluxing time required was 4 h to get reddish yellow crystals; yield: (1.8 g, 59.01%); m.pt. 185°C; [Found: C, 58.10; H, 2.80; N, 5.00; S, 22.29%.; Calcd.: C, 58.53; H, 3.13; N, 4.87; S, 22.08%]; [Mol. wt.: found, 286; required, 287]; v_{max}: 4000-3480, 1425, 1250 (OH); 3040, 1340 (NH); 1740 (C=O); 1480 (mercaptamide); 1180, 780 (C=S); and 1100, 1020, 880, 820 (Ar) cm⁻¹; λ_{max} : 302, 462, 564 nm; δ : 1.89 (OH), 5.80 (naphthyl), 7.0-7.70 (Ar, H, C=CH), 7.95 (NH); R_f : 0.15 (black); Pb^{2+} , 0.08 (yellow); Cu²⁺, 0.20 (light green) and Cd²⁺, 0.74 (yellow).

Spot-tests: A drop of rhodanine derivative's (II-III) solution (0.01%, DMF) was added to few drops of alcoholic solutions (0.01 M) of the respective metal salts (Cl⁻, NO₃) on a spot plate. The colours so developed have been recorded in Table-1. Then two drops of NH₄OH (aq 5%) were added to the respective reaction mixtures present in the spot-plate cavity and the incurred changes have also been noted in Table-1.

416 Vajpai et al. Asian J. Chem.

SIOI-TESTS OF CATIONS BY KINDDANINE DERIVATIVES (II-III)							
Cations		(II)	(III)				
	(a) ·	(b)	(a)	(b)			
Ag ⁺	Red	Reddish-brown + ppt	Black	Black + ppt			
Mn ²⁺	Orange	Pinkish-orange	Orange	Pinkish-orange			
Ni ²⁺	Brownish-green	Reddish-brown	Brownish-gray	Reddish-brown			
Cu ²⁺	Pinkish-brown	Reddish-brown + ppt	Brownish-green	Reddish-brown + ppt			
Zn^{2+}	Orange	Orange + ppt	Orange	Orange + ppt			

Yellow

Orange

Green

Yellow

Orange-yellow

Orange-brown

Reddish-yellow

Brown

Orange

Orange

Orange

Orange + ppt

Reddish-brown

Reddish-brown + ppt

TABLE-1 SPOT-TESTS OF CATIONS BY RHODANINE DERIVATIVES (II-III)

Yellowish-orange

Brown + ppt

Reddish-green

Reddish-brown + ppt

Orange

Orange

Orange

Ag⁺ Mn^{2+} Ni²⁺ Cu^{2+} $2n^{2+}$ Cd^{2+}

Hg²⁺

Ph²⁺

 Cr^{3+}

Fe3+

Co³⁺

Ti³⁺

Orange

Orange

Yellow

Green

Yellow

Orange-brown

Reddish-yellow

Paper chromatographic separation: It was executed on chromatographic filter paper (30 \times 2.5 cm) number one. The *n*-butyl alcohol mixed with glacial acetic acid (5%, v/v) and the same alcohol saturated with 3 N HCl were used as developing solvent for Ag⁺, Pb²⁺ and Cu²⁺, Cd²⁺ separations respectively. The seperation time required ca. 12 h in case of former and ca. 16 h for subsequent metal-ion pair. The spray reagents used was the 0.1% solution of rhodanine derivatives (II-III) in DMF. The determined R_f values and the colour of spots have been recorded.

Biological screening: The anti-microbial activity of II-III was evaluated in vitro by using some selected bacterial and fungal species. The inhibitory zone by "Agar Diffusion Method", Laben (1950), was used to determine the potentiality of II-III. To inhibit the growth of selected test organisms the solutions (DMF) of II-III were employed at 30, 50 and 100 µg mL⁻¹ concentrations. For bacterial species the incubation period demanded 24 h (37°C) but for fungal species it required 8 days (27°C). All the experiments were repeated in triplicate and the average results are being recorded in Table-2.

Insecticidal activity: Mosquito (anopheles and culex sp.) eggs were collected, identified and kept separately in proper environment for hatching. The ethanolic-DMF (5:1) solutions (10 mL), with different concentrations (10–90 μ g mL⁻¹), of rhodanine derivatives (II-III) were tested for insecticidal activity against twenty mosquito larvae, at subsequent developing stages, in water (100 mL). The results have been recorded in Table-3.

⁽a) = Reagent alone and (b) = Reaction mixture + NH₄OH

TABLE-2 ANTI-MICROBIAL ACTIVITY OF RHODANINE DERIVATIVES (II-III)

Tank anasias	DD	(II)		(III)	
Test species	DP	Z	Res	Z	Res
Bacterial					
E. Aeruginosa	30 .	09		10	
-	50	12	S	15	S
	100	15		18	
P. Putida	30			02	
	50	08	PS	10	PS
	100	10		12	
Rhz. sp.	30	07		09	
	50	10	S	13	S
	100	16		18	
S. Faecalis	30	18	i.	20	
	50	22	VS	28	VS
	100	. 27		36	
S. Aureus	30	20		23	
	50	24	VS	29	VS
	100	30		37	
Fungal					
S. Schenckii	30	05		08	
	50	16	S	20	S
	100	20		22	
A. Fumigates	30	12		14	
	50	18	VS	25	VS
	100	28		32	

 $DP = Disc potency (\mu g), Z = Zone of inhibition (mm), Res = Result, S = Sensitive, PS = Partially$ sensitive and VS = Very sensitive.

TABLE-3 INSECTICIDAL ACTIVITY OF RHODANINE DERIVATIVES (II-III)

	Required time (min) for 100% mortality (25°C)								
Larva in subsequent stages	(II)			(III)					
	(a)	(b)	(c)	(d)	(a)	(b)	(c)	(d)	- Control
Anopheles sp.									
Wrigglers	24.0	20.0	18.0	15.0	14.0	13.0	11.0	9.5	80.0
3-days old	26.0	23.0	20.5	19.0	15.0	14.5	12.5	10.5	95.0
6-days old	29.0	25.5	24.0	21.5	16.0	15.5	13.5	12.5	110.0
Full grown	30.0	28.0	27.0	25.0	17.0	16.5	16.0	15.0	125.0
Culex sp.									
Wrigglers	23.5	19.5	17.5	14.5	14.0	13.0	10.8	9.2	79.0
3-days old	25.5	22.5	19.5	18.5	15.2	14.0	12.3	10.3	98.5
6-days old	28.5	25.0	23.5	22.0	16.0	15.3	13.6	12.4	110.0
Full grown	29.5	27.0	26.5	24.8	16.9	16.4	15.8	14.8	124.8

Concentrations: (a), (b), (c) and (d) represent ca. 10, 20, 40 and 90 µg mL⁻¹ respectively.

418 Vajpai et al. Asian J. Chem.

RESULTS AND DISCUSSION

The recorded analytical and physical data support the proposed structures of the synthesised rhodanine derivatives (II-III). The IR spectra³ of II-III showed no indication of a —SH band in the region $2600-2500~\rm cm^{-1}$ but exhibited a strong absorption at $1480~\rm cm^{-1}$ pertaining to mixed vibration of mercaptomide band. Along with frequent absorptions of aromatic rings the II-III showed bands at 4000-3480, 1425-1420 and 1250-1240; 3040, 1340 and 1280; 1740-1700, 1180-1175 and $780~\rm cm^{-1}$ corresponding to $\nu(OH)$, $\nu(NH)$, $\nu(C=O)$ and $\nu(C=S)$ respectively. Thus, the association of rhodanine moiety with respective aldehydes is evident in II-III.

The electronic spectra³ of **II-III** exhibited characteristic maxima for π - π * transitions, corresponding to conjugated aromatic rings containing a thio-keto structure, in the range 269–302 nm. The other absorption bands observed at 393 (II) and 462 (III) nm may be ascribed to π - π * transitions related to thio-keto structure and lengthening of conjugated system. An additional band at 564 nm found in III may however be attributed to existence of a naphthyl system.

The ¹H NMR spectra³ of **II-III** have shown sharp to medium bands at δ 1.89, 2.85, 5.80 (**II**), 6.80–7.80, and 7.95 corresponding to the resonated —OH protons, aromatic and C=CH protons and —NH protons respectively. In **III** the —OH proton has shown a medium intensity band at δ 1.89 in comparison to sharp band at δ 2.85 in **II**, and the —CH proton has exhibited an additional broad sharp band at δ 5.80. These differences may be attributed to different electronic environment due to presence of a hydroxy naphthyl system in **III**.

The perusal of results, Table-1, suggests that the rhodanine derivatives (II-III) on interaction with metal ions generate specific colours and so they may be used as spot-test reagents. Rhodanine derivatives are known to function as good complex forming ligands. Thus, with their available donor sites the II-III must have interacted with respective metal ions to form either a coloured lake or a soluble metal chelate. For this the coordination is very likely through potential thio-carbonyl and nitrogen part of the rhodanine entity of the studied derivatives (II-III). This expectation gets support from the study of IR spectra of respective Cu(II) complexes, where the absence of bands at 3040, 1340 and 1280 (v(NH)), 1180–1175 and 780 (v(C=S)) cm⁻¹ and the slight lengthening of bands pertaining to v(C=O) and v(OH) has been confirmed.

On adding two drops of dil.NH₄OH to the coloured solutions resulting due to interactions of respective metal ions with II-III, it was noticed that either the colour intensity has increased or the colour has changed. This type of indications may also be useful in the detection of metal ions by spot-test method. In case of Ag⁺, Cu²⁺, Zn²⁺, Hg²⁺ and Fe³⁺ the precipitation (traces) has also been noticed. This finding may therefore be employed for gravimetric estimations of the aforesaid metal ions.

On the basis of spot-test results, Table-1, the **II-III** have successfully been deployed as spray reagents in the paper chromatographic separations of pair of some metal ions $(Ag^+, Pb^{2+}; Cu^{2+}, Cd^{2+})$. The recorded R_f values are in good agreement with the standard results and the colours of the spots are distinctive.

In biological screening, Table-2, it was found that the solutions of II-III are very sensitive against S. faecalis, S. aureus and A. fumigates; sensitive against S. aeruginosa, Rhz. sp. and S. Schenekii; and partially sensitive against P. putida. It is also apparent from the results, Table-2, that the sensitivity of III is distinctly greater than of II against all test species.

Anti-tubercular activity of the rhodanine derivatives (II-III) was tested against Mycobacterium tuberculosis H₃₇Ra and it was found that the minimum inhibitory concentration required is 100 and 98 µg mL⁻¹ for II and III respectively.

Insecticidal activity results, Table-3, clearly indicate that the toxicity effect for 100% mortality of mosquito (anopheles and culex sp.) larvae is maximum at 90 μg mL⁻¹ concentration with respect to control. It is also evident that III is more effective than II in respect of both species and II-III are slightly more efficacious for culex sp.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. S.M. Verma, Prof. Emeritus of BHU, and Dr. V.S. Jolly, Jt. Director, Cancer Research Institute, Gwalior (M.P.) for their interest and valuable suggestions; Director CDRI, Lucknow (U.P.) and Dr. G.K. Jain, Asstt. Director, Toxicology Division in particular; and Environmental Biology and Chemistry Departments of A.P.S. University, Rewa (M.P.); and Principal, Govt. Model Science (Autn.) College, Rewa (M.P.) for facilities.

REFERENCES

- 1. H.H. Moharram, A.M. Abdel Fattah, E.L.M.M. Merzabani and S.A. Mansour, Egypt. J. Chem., 26, 301 (1983); Tanaka and Kuniyoshi, Chem. Pharm. Bull., 32, 3291 (1984); A. Pandey and V.K. Saxena, Curr. Sci., 55, 488 (1986); R.R. Mohar and M. Shrivastava, Indian Drugs, 26, 342 (1989); K. Dash, D. Panda and B. Dash, J. Indian Chem. Soc., 67, 58 (1990); B. Richard, M. Martin and P. Roger, Inorg. Met-Org. Chem., 20, 1395 (1990); Lafferty, K. John and P. Zill, Ann. Eur. Pat. Appl. Eq., 45, 337, 500 (1991); G.D. Shafie, Ibrahim and M. Tarek, Bol. Soc. Quim. Peru, 58, 90 (1992); Kato, Hiroki, Sueda and Noriyoshi, To-Kyo Koho, Jp., 4, 770 (1992); V. Gorishmy, O.V. Vladzimirskaya, P.N. Stbjuk, I.L. Demchk, K.M. Ali and N.V. Silenko, Farm. Zh. (Kiev), 2, 66 (1995).
- 2. P.L. Jullian and B.M. Sturgis, J. Am. Chem. Soc., 57, 1127 (1937); Horning and Allen, Org. Syn., Vol. 3, J. Wiley, London, p. 763 (1967); K.S. Tiwari, Ph.D. Thesis, APS University, Rewa (M.P.) (1981).
- 3. J. Brown, Chem. Rev., 61, 476 (1961); F.G. Moers and J.J. Steggerda, J. Inorg. Nucl. Chem., 30, 3217 (1968); H. Rifart, H. Ead and A. Osman, Appl. Spectrosc., 32, 557 (1978); T. Allan and R.E. Lenkiski, Inorg. Chim. Acta, 71, 136 (1987); J.S. Shukla and R. Shukla, J. Indian Chem. Soc., 66, 209 (1989); A. Jain and A.K. Mukherjee, J. Indian Chem. Soc., 67, 973 (1990); C.N.R. Rao, Ultraviolet and Visible Spectroscopy and Chemical Applications, Butterworths (1961); R.M. Silverstein and G.C. Bassler, Spectrometric Identification of Organic Compounds, 2nd Edn., J. Wiley, New York, pp. 70, 122, 155 (1968); D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th Edn., Tata McGraw-Hill, New Delhi, pp. 14-25, 35-57 (1988).