Synthesis of Some New Phenolic Azo Schiff Bases—Part I

A.W. RAUT*, S.T. JADHAO and A.G. DOSHI Department of Chemistry Shri Shivaji Science College, Amravati 444 603, India

p-Nitroaniline on diazotisation gives p-nitrobenzene diazonium chloride (I) which on condensation with salicylaldehyde gives 2-hydroxy-5-(4-nitrophenylazo) benzaldehyde (II). The compound (II) on condensation with substituted aniline gives 2-hydroxy-5-(4-nitrophenyl azo) benzylidine substituted aniline, i.e., substituted phenolic azo Schiff bases.

Anticancer Schiff bases have been synthesised by condensation of aniline with substituted benzaldehyde¹. Bezaldehyde-2-hydroxy aniline was prepared by condensation of o-aminophenol with substituted benzaldehyde in ethanol in presence of 2–3 drops of concentrated H_2SO_4 .² Benzioxazoles were prepared by cyclisation of O,N-diacetyl derivative of o-aminophenol at lower temperature by treating aminophenol with carboxylic acid or its derivative³. It was suggested that azomethine linkage might be responsible for biological activities of Schiff bases⁴. Some oxime derivatives having ethoxy group have been reported to possess antiinflammatory activities⁵. Some 2-oxothiazoline hydrazones from 3-methoxy, Δ -allyloxy-benzaldehyde are endowed with anti-HIV activity⁶. Some new azo pyrazoles have been synthesised by Jolly $et\ al$.⁷ Recently some new azo Schiff bases have been synthesised by the reaction of 5-p-methoxyphenylazo salicylal-dehyde with primary aromatic amines⁸.

Literature survey indicates that 2-hydroxy-5-(p-nirophenylazo) benzylidine aniline was not prepared from 2-hydroxy-5-(p-nitrophenylazo) benzaldehyde. Hence it was thought interesting to prepare 2-hydroxy-5-(p-nitrophenylazo) benzylidine substituted aniline.

Synthesis of 2-hydroxy-5-(p-nitrophenylazo) benzaldehyde (II)

p-Nitroaniline (4.5 mL) was dissolved with sodium nitrite (40 g). The cold solution of salicylaldehyde (59 mL, 6 N) in aqueous sodium hydroxide (40 mL, 12 N) was added slowly with constant stirring below 5°C. The resulting crude solid was washed with water and recrystallised from benzene to get 2-hydroxy-5-(p-nitrophenylazo) benzaldehyde (m.p. 194°C).

$$O_{2}N \xrightarrow{N} NH_{2} \xrightarrow{NaNO_{2}/HCI} O_{2}N \xrightarrow{N} N=N-CI$$

$$O_{2}N \xrightarrow{N} N-CI + OH \longrightarrow O_{2}N \xrightarrow{N} N=N \xrightarrow{N} N+N-CI$$

$$O_{2}N \xrightarrow{N} N-CI + OH \longrightarrow O_{2}N \xrightarrow{N} N=N-CI$$

$$O_{1}N \xrightarrow{N} N-CI + OH \longrightarrow O_{2}N \xrightarrow{N} N-CI$$

Compound II: m.w. = 271, m.p. = 194° C, Colour = Yellow

Address for correspondence: Dr. Ashok W. Raut, 23, Keshav Colony, Camp Road, Amravati-444 602, India.

620 Barot et al. Asian J. Chem.

Synthesis of 2-hydroxy-5-(p-nitrophenylazo)benzylidine-m-nitroaniline(IIIa)

$$O_{2}N \longrightarrow N=N \longrightarrow OH$$

$$R_{3} \longrightarrow R_{1}$$

$$H_{2}SO_{4} \longrightarrow R_{3} \longrightarrow R_{2}$$

$$CH = N \longrightarrow R_{3} \longrightarrow R_{2}$$

$$CH = N \longrightarrow OH$$

$$R_1 = H, R_2 = NO_2, R_3 = H$$
 (III) a

Compound III: m.f. $C_{19}H_{13}N_5O_5$, m.w. = 391, m.p. = 260°C, Colour = Yellow

2-Hydroxy-5-(p-nitrophenylazo) benzaldehyde condensed with m-nitroaniline in ethanolic medium in presence of concentrated H₂SO₄, when compound IIIa was obtained

IR spectrum of compound IIIa (Nujol): 3700-3000 (Ar—OH stretching), 1550 (N=N stretching of azo phenyl) 1620 v(CH=N azomethane), 1550 v(Ar—NO₂ stretching), 1600, 1500 (Ar stretching), 1300 (ArNO₂ stretching).

PMR (in CDCl₃ TMS as internal standard): 7.2–8.6 m (11H, Ar—H); 9.1s (1H, H of CH—N); 14.2 s (1H Ar—OH)

TABLE-1
ANALYTICCAL DATA OF PHENOLIC AZO SCHIFF BASES.

S.No.	R ₁	R ₂	—R ₃	m.p. (°C)	Colour	m.w.	Yield (%)
IIIa	Н	NO ₂	Н	260	Yellow	391	55
IIIb	NO_2	Н	Н	252	Yellow	391	50
lllc	Н	Н	NO_2	183	Brick red	391	56
IIId	CH ₃	Н	Н	232	Red	360	83
Ille	Н	CH_3	Н	190	Red	360	85
IIIf	Н	Н	CH ₃	203	Brown	360	88
IIIg	SO ₃ H	Н	Н	188	Yellow	426	38
IIIh	Н			222	Brown/grey	396	48
IIIi	Н	Н	Н	215	Brown	346	60

REFERENCES

- 1. F.D. Pobb, J. Org. Chem., 26, 566 (1966).
- 2. P.D. Lokhande and B.J. Ghiya, J. Indian Chem. Soc., 68, 412 (1991).
- 3. T. Masnow, I. Masaleo and K. Vulch, Synthesis, 6, 434 (1982).
- 4. D.R. Shridhar, L.C. Vishwakarma and S.B. Rao, J. Indian Chem. Soc., 56, 84 (1979).
- 5. A.K. Singh and Shriniwas Rastogi, Indian J. Chem., 32B, 738 (1993).
- V.S. Jolly and K.P. Sharma, J. Indian Chem. Soc., 67, 412 (1990).
- 7. V.S. Jolly, M. Pathak and R. Jain, Indian J. Chem., 32B, 505 (1993).
- 8. Anand Halve and Abha Goel, Oriental J. Chem., 12, 87 (1996).