NOTE

Halogen Scrambling in Pt(II) Substitution Reaction

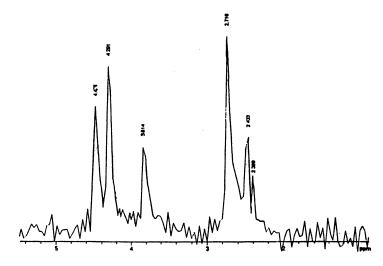
S.J. SABOUNCHEI* and H. KHAVASEI†
Department of Chemistry, Bu-Ali Sina University
Hamadan. Iran-65174

Addition of NBu₄Br to M[PtCl₃(PPh₃)] in dichloromethane results in a redistribution of halogens and formation of all six isomers of the type M[PtBr_{3-x}Cl_x(PPh₃)], (x = 0, 1, 2 and 3), which have been identified by ${}^{31}P-\{{}^{1}H\}$ NMR spectroscopy.

Oxidative-addition of bromine to square-planar *trans*-dichloro platinum(II) complexes was found to result in a statistical scrambling of chlorine/bromine and formation of the octahedral platinum(IV) complexes, trans-[PtCl_{4-x}Br_x(PR₃)L] R = Et, Bu, L = PEt₃, Py, O-substituted Py (Py = pyridine)¹, and a related redistribution occur during oxidative addition of gold(I) complexes. Similar results have been obtained for chlorine/bromine scrambling in [PtX₃L] (X = halogen, L = phosphine ligand) complexes^{2, 3, 4}.

We have recently shown that statistical redisribution of chlorine/bromine occurs on addition of chlorine (excess mol) to [PtCl₃(PF₃)]⁻ (1 mol) in chloroform solution at 25⁰C.⁵ The present work reports that similar results are obtained on addition of bromine (7 mol) to [PtCl₃(PPh₃)] (1 mol) in the same condition.

The ^{31}P NMR spectrum was obtained on jeol FT FX NMR 90 Q spectrophotometer for solution of complexes in deuteridio dichloromethane; chemical shifts (high frequency is positive) are quoted relative to external 85% H_3PO_4 . The value of δ_p was obtained with solutions containing 100 mg of the complex. The preparation of (NBu₄)[PtCl₃(PPh₃)] was carried out exactly as described^{5,6} and analyses agree with those previously found. The preparation of (NBu₄)[PtBr_{3-x}Cl_x(PPh₃)] x = 0, 1, 2 and 3) was carried out by adding NBu₄Br (excess mol) to a solution of (NBu₄)[PtCl₃(PPh₃)] (1 mol) in dichloromethane at 25°C.


Addition of bromide (excess mol) to $(NBu_4)[PtCl_3(PPh_3)]$ (1 mol) at room temperature in dichloromethane results in the formation of all six isomers of the type $(NBu_4)[PtBr_3 - {}_xCl_x(PPh_3)]$ (x = 0, 1, 2 and 3) (See Fig. 1).

The ³¹P-{¹H} NMR spectra of the solution show all six isomers to be present and (neglecting satellites due to ¹⁹⁵Pt-coupling) consists of six lines. Thus the two sets of resonances are due to either chlorine or bromine being *trans* to phosphine and the three resonances within each set are due to progressive replacement of chlorine *cis* to the phosphine by bromide (see Table). Their assignment follows from a comparison with the spectra of authentic (NBu₄)[PtX₃(PPh₃)] (x = Cl⁻ or

[†]Department of Chemistry, Arak University.

TABLE-1 CHEMICAL SHIFTS (ppm) AND COUPLING CONSTANTS (Hz) FOR COMPLEXES OF THE TYPE [PtBr₃- $_x$ Ci_x(PPh₃)] (X = 0, 1, 2 and 3)

Br Ph ₃ P—Pt—Br Br	2.389 3830.50
PhyP—Pt—CI	2.462 3752.92 1
CI PhyP—Pt—Br Br	2.722 3900.72 2 2.1
CI Ph ₃ P—Pt—Br CI	3.752 4006.13 1 1
Br PhyP—Pr—CI CI	4.297 3878.23 2 · 1.9
PhyP—PC	4.463 4092.39
Isomers	δ _(p.p.m.) ¹ ₁ _(pt - p) Intensity: Predicted Found

³¹P-{¹H} NMR spectrum of [PtBr_{3-x}Cl_x(PPh₃)] (X = 1, 2 and 3). Isomer numbers refer to Scheme and Table

Br and from the almost systematic upfield shift of δ_p and decrease in ${}^1J_{(Pt-P)}$ found on progressive replacement of chlorine or bromine cis to the phosphine in trans-[PtBr_xCl_{4-x}(PEt₃)L], and similar complexes^{2,6,7}

There is a good correlation between the total electronegativity of the halides present in these complexes which is in good agreement with literature^{2, 3, 5} and depend only slightly on whether the chloride is cis or trans to phosphine.

ACKNOWLEDGEMENT

We are most grateful to the university of Bu-Ali-Sina for a grant and Mr. M. Zebardjadian for plotting NMR spectra and Mrs. moosavei for typing.

REFERENCES

- 1. B.T Heaton and K.J. Timmins, *Chem. Comm.*, 931 (1973).
- 2. B.T. Heaton and R.J. Kelsey, Inorg. Nucl. Chem. Letters, 11, 363 (1975).
- 3. R.J. Foot and B.T. Heaton. Ph.D. Thesis, University of Kent, U.K.
- 4. S. Ahrland, J. Chatt and N.R. Davies, Quart. Kevs., 12, 265 (1958).
- 5. S.J. Sabounchei and M.H. Sadre, Oriental J. Chem., 15, 49 (1999).
- 6. R.J. Goodfellow and L.M. Venanzi, J. Chem. Soc., 7533 (1965).
- 7. C. Brown, B.T. Heaton and S.J. Sabounchei, J. Organomet. Chem., 142, 413 (1977).

(Received: 6 September 1999; Accepted: 14 December 1999) AJC-1955