NOTE

Thermodynamic Stablity of Zn(II) Complexes with Some Amino Acids and Pyridoxine (Vit. B₅)

ALOK K. JAIN and H.C. KATARIA*

Department of Chemistry

Government Postgraduate College, Pipariya-461 775, India

Stability constant (log B) and thermodynamic parameters such as enthalpy change (ΔH), free energy change (ΔG) and entropy change (ΔS) of Zn(II) complexes, with L-lysine, L-ornithine, L-threonine, L-serine, L-phenylglycine, L-phenylalanine, L-glutamic acid and L-aspartic acid as primary ligand and pyridoxine (Vit B₅) as secondary ligand, were calculated by applied polarographic method, at pH = 8.50 \pm 0.01 and ionic strength μ = 1.0 NaClO at 25°C.

Amino acids are well known chelating agents and play an important role in biology, pharmacy and industry¹⁻³, as aspartic acid and glutamic acid play important role in transamination, cell-metabolism and nerotransmission⁴⁻⁷. Thermodynamic parameters of Zn(II) complexes with L-amino acids and vitamin B complex on DME (dropping mercury electrode) have been calculated using thermodynamic equations.

The ligands, L-amino acids, were Lobachem products. All the solutions were prepared in double distilled water. The purity of L-amino acid was checked by chromatographic method⁸. The concentrations of metal ions, and NaClO₄ in the test soutionsl were 0.5 m and 1.0 m respectively.

Polarograms were obtained at 25°C, with the help of Toshniwal manual polarograph (model PE-50). The dropping mercury electrode had capillary characteristic VS SCE m^{2/3}t^{1/6} = 2.40 mg^{2/3} s^{-1/2} at effective mercury height 60.02 cm calculated. Pure hydrogen gas was passed through each test solution before recording the current-voltage curve. Elico digital pH meter (model LI-180) was used to measure the pH of each test solution at 8.50 ± 0.01 adjusted with the solutions of NaOH and HNO₃ as required.

Zn gave a well defined two electron quasi-reversible reduction wave at $pH = 8.50 \pm 0.01$ and $\mu = 1.0 \, M$ NaClO₄. The irreversibility increased with increase of concentration of ligand in each case.

The values of $(E_{1/2})^5$ rev. were calculated by modified Gelling's method. The free ligand concentration of amino acids was determind by pK₂ and pH of each of the test solutions.

THERMODYNAMIC PARAMETERS

	Stat	Stability Constants	ants	Δ	ΔH kcal/mole	a	Δ	ΔG kcal/mole	e	SΔ	ΔS cal/deg/mole	ole
Zn-L-amino acidate-pyriodoxinate	$\log\beta_{11}$	$\log\beta_{12}$	log eta_{21}	log β11	log β ₁₂	log β21	log β11	log β ₁₂	log β ₂₁	log β11	log β_{12}	log β21
)	(at 25/35°C)	(;		(at 25°C)		, w	(at 25/35°C)			(at 25/35°C)	
Zn-L-lysinate-Pyridoxinate	4.220	009.9	9.540	-9.240	-12.600	-16.800	-5.755 -5.635	-9.410 -9.300	-13.010	-11.690	-10.700 -10.710	-12.720 -12.730
Zn-L-ornithinate-pyridoxinate	4.380	7.080	9.760	-10.080	-13.860	-17.640	-5.972 -5.830	-9.654 -9.510	-13.310	-13.785 -13.798	-14.110 -14.120	-14.530 -14.540
Zn-L-threoninate-Pyridoxinate	4.480	7.710	9.930	-11.340	-15.540	-19.320	-6.110 -5.930	-10.153 -10.340	-13.541	-17.550 -17.560	-16.870 -16.880	-19.390 -19.400
Zn-L-serinate-pyridoxinate	4.640	7.860	9.660	-12.180	-16.800	-20.580	-6.330 -6.130	-10.718 -10.510	-13.841	-19.630 -19.640	-20.410 -20.420	-22.610 -22.620
Zn-L- phenylglycinate-pyridoxinate	4.790	8.050	9.780	-13.020	-17.640	-23.100	-6.531 -6.314	-10.977 -10.750	-14.086 -13.784	-21.775 -21.785	-22.360 -22.370	-30.250 -30.260
Zn-L-phenylalaninate-pyridoxinate	5.010	8.140	9.970	-15.120	-20.580	-24.780	-6.831 -6.550	-11.100 -10.780	-14.400	-27.810 -27.820	-31.810 -31.820	-34.830 -34.840
Zn-L-glutamate-pyridoxinate	5.950	9.130 8.590	10.650	-17.640	-22.680	-26.040	-8.113 -7.790	-12.450 -12.104	-14.522 -14.132	-31.970 -31.980	-34.330 -34.340	-38.650 -38.660
Zn-L-aspartate-pyridoxinate	6.120 5.680	9.240	10.871	-18.480	-24.360	-27.300	-8.345 -8.000	-12.600 -12.205	-14.822 -14.400	-34.010 -34.020	-39.460 -39.470	41.870

576 Jain et al. Asian J. Chem.

The $E_{1/2}$ values become more negative with the addition of pyridoxine to (Zn-L-amino acidate) system at $\mu = 1.0$ M NaClO₄ and at pH = 8.50 ± 0.01 .

Showing the formation of ternary complexes, Schaap and McMaster's method confirmed the formation of 1:1:1, 1:1:2 and 1:2:1, complexes of Zn(II) with L-amino acids and pyridoxine. Thermodynamic parameters such as enthalpy change, free energy change and entropy change of the complexes have been calculated by the following equations 10:

$$\Delta H = 2.303 \text{ RT}_1 \text{T}_2 \log \text{ K}_2/\text{K}_1$$

 $\Delta G = (\text{T}_2 - \text{T}_1)(2.303 \text{RT} \log \text{ K})$
 $\Delta S = \Delta H - \text{T} \Delta S$

It is clear from the values of ΔS , ΔG and ΔH in Table-1 that complexes of transition metals are not stable at higher temperatures^{11, 12}. The value of ΔS is more negative at higher temperatures and ΔG is less negative at higher temperatures confirming that the complexes are not stable at higher temperatures. The negative values at ΔH show that the reactions are exothermic in nature.

The order of solution stability obtained was

L-lysine < L-ornithine < L-threonine < L-serine < L-phenylglycine < L-phenylalanine < L-glutamic acid < L-aspartic acid.

REFERENCES

- R.T. Morrison and R.N. Boyd, Organic Chemistry, 4th Edn., Allyn and Becon Inc., London, p. 1118 (1959)
- 2. W.F. Stack and H.A. Skinner, Trans. Faraday Soc., 63, 1136 (1967).
- 3. G. Beech, Q. Rev. Chem., 23, 410 (1970).
- 4. R. Behnischi, F. Meitzch and H. Schmidt, J. Am. Chem. Soc., 72, 61 (1950).
- 5. H.G. Garg and R.A. Sharma, J. Pharma. Sci., 59, 350 (1970).
- 6. D.E. Metzler and E.E. Snell, J. Am. Chem. Soc., 74, 979 (1952).
- 7. D.R. Curtis and J.G. Watkins, J. Neuro. Chem., 6, 117 (1960).
- 8. A.A. Khan and W.U. Malik, J. Indian Chem. Soc., 40, 566 (1963).
- 9. W.B. Schapp and D.L. McMaster, J. Am. Chem. Soc., 83, 4999 (1961).
- J.C.F. Rossotti and H. Rossotti, The Determination of Stability Constants, McGraw-Hill, London (1961).
- 11. F. Khan and A.V. Mahajani, J. Indian Chem. Soc., 61, 165 (1984).
- 12. ———, J. Indian Chem. Soc., **60**, 296 (1983).

(Received: 30 June 1999; Accepted: 14 December 1999) AJC-1950