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On the Irreversible Thermodynamic Framework for Closed
Systems Consisting of Chemically Reactive Components
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A methodology has been described to develop an irreversible
thermodynamic framework based on the laws of thermodynamics
and exemplified by applying it to a spatially uniform chemically
reacting closed system with no irreversibility in the energy exchan-
ges. It is shown that if in the Gibbs relation the chemical composi-
tion determining extensive parameters appear as independent
thermodynamic variables and if their variation includes the changes
due to chemical reaction, then it, in fact, is an irreversible thermo-
dynamic description. The de Donderian thermodynamic framework
is basically a nonequilibrium description in which the chemical
affinity containing term is the manifestation of the irreversibility in
chemical interactions. This confirms that the Gibbs function
primarily takes care of the chemical interactions and hence the
quantification of the irreversibility in the latter need to be achieved
through the former function by identifying its suitable expression.

INTRODUCTION

Irreversible thermodynamics (IT) has made a considerable progress beyond
the classical irreversible thermodynamics (CIT)'"™!! of Onsager-Prigogine-
Meixner-deGroot. Recall that second law of thermodynamics directly provides
an entropy function for equilibrium states'> 13, On the other hand, for nonequi-
librium situations there, one has the Clausius’ inequality and hence an entropy
function for nonequilibrium states does not directly follow from the second law
of thermodynamics'®. This difficulty is sidelined in CIT by postulating a local
equilibrium assumption (LEA)."" % Therefore, it is natural to enquire whether an
IT can be developed for the nonequilibrium situations beyond LEA. In this pursuit
a good number of IT frameworks have been developed.'*® However, these
developments also surface out certain incoherences in various perceptions of
LEAY and there too emerged a hot debate on the concepts of temperature and
entropy for nonequilibrium states®* . We believe that the cause of the existence
of such a state of affairs in IT, as spelt out earlier,'” > lies in the fact that so far
an ab-initio method based on the laws of thermodynamics has not been followed
for developing an IT framework. The exception being the works of Eu'” 46 47 and
of the present author*" 335 wherein a concern for this requirement has been spelt
out. The present author has developed a generalized phenomenological
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irreversible thermodynamic theory (GPITT) in which a universal inaccessibility
principle (UIP) is identified which directly gives a position and time dependent
entropy function®" 335, Whereas Eu'"*% %" has arrived at the entropy of non-
equilibrium states by a suitable manipulation of the Clausius’ inequality, the same
we have reproduced with a few modifications in the preceding paper'®. Notice
that in this latter development one arrives at the rate of change of entropy both
at the global and the local levels of descriptions whose complete quantification
depends on an amicable handling of the uncompensated heat contained in the
respective expressions®®. We too have addressed ourselves to this problem. Thus
in our pursuit to develop an IT framework starting from the laws of ther-
modynamics we have recenuly generalized the zeroth law of thermodynamics
which brings in its fold the nonequilibrium states too and thus a thermodynamic
establishment of the concept of temperature for nonequilibrium states is accom-
plished.* This in turn ensures that on suitable manipulation of the Clausius’
inequality an entropy function is obtained by using the temperature function
provided by the generalized zeroth law of thermodynamics. Next in combining
the entropy expressions.so obtained with the respective expressions of the first
law of thermodynamics a basic IT framework would be obtained. In this way we
would have an IT framework which is based on the laws of thermodynamics.

In this paper we are exemplifying the above described method by tackling a
closed system having an irreversibility only on account of a chemical reaction
occurring at a finite rate. This paper serves to establish that without retaining
irreversibility on account of the occurrence of a chemical reaction at a finite rate
no chemical composition determining extensive parameter of the system (closed)
can be made to act as an independent thermodynamic variable. It is once again
shown that without the validity of a Gibbs-Duhem equation no thermedynamic
framework exists, whether an equilibrium or a nonequilibrium one.

Quantification of Uncompensated Heat

We recall that for the spatially uniform closed system the rate of change of its
entropy is given by eq. (19) of the prcceding paper“, namely:
as@m _ 1 &_

at - T() dt SO+ T© da @

where S is the entropy of the nonequilibrium state of the system, T is the

temperature of the system, dQ is the differential element of heat exchanged by

the system, dQ’ is the uncompensated heat and t is time. The second law of
thermodynamics guarantees (cf. eq. 18) of the preceding paper'®) that’

dQ’ 20 ?2)

Next we require the corresponding expression for the first law of thermodynamics,
which for the type of system under consideration reads as

dU _dQ _
dt o dt -5 dt @)

where U is the internal energy of the system, p is the pressure and V is the volume
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of the system. As the irreversibility in mechanical energy exchange is assumed
as not involved, the work term in eq. (3) is only due to the p-V changes of the
system. Also from eq. (2) onwards we are not depicting the time t dependence of
the quantities for the sake of simplicity but it remains implied. On substituting
eq. (3) into eq. (1), we have '

dS . dU. . dV  .dQ
AT g PTGt Ty @

or equivalently,

du __.dS dv dqo’
aTa e ®
Notice that in the first law of thermodynamics namely eq. (3), there we have
two terms on its right hand side. One originates in the thermal interactions and
the other in the mechanical interactions of the system with its surroundings.
Hence, in eq. (5), T and S are the thermal and p and V are the mechanical
parameters of the system. Also since the system under consideration is spatially
uniform the thermal and the mechanical interactions, contained in eq. (5), are
those which are determined by the interaction of the system at its bounding surface
with its surroundings but no irreversibility is assumed to be existing therein too.
Hence, dQ’ of eq. (5) must have its origin in other than the thermal and mechanical
interactions. However, since dQ’ appears in the above description only on account
of an irreversibility and the irreversibility in the present case is assumed to be
existing only due to a chemical reaction occurring at a finite rate, hence dQ” must
be a manifestation of a chemical interaction. Therefore, the quantification of
dQ’ needs to be accomplished through the chemical interaction determining
parameters. However, there are two possible ways to do this which we are
describing below.

’i‘he Traditional Approach

When a chemical conversion within a system takes place its chemical com-
position changes which is the manifestation of the existing chemical interactions.
Obviously, the mole numbers become the automatic choice for the composition
determining extensive parameters. As we know, in the case of volume change the
pressure is its conjugate thermodynamic potential, hence exactly on the same lines
on taking n,,” the mole number of the component k, as the composition
determining parameter at time t, the conjugate potential to dn, would obviously
be termed as the chemical potential, which we denote by L. Indeed, it turns out
that this p, is the same physical entity (with the same name) which appears in
the traditional Gibbs relation valid for open systems carried reversibly'2, How-
ever, herein we have introduced it for a nonequilibrium state.

The above discussion on the chemical interaction allows us to write the
following expression for dQ’ for the case under consideration, namely:

aQ _ 9_1«
a Zuk >0 (6)
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Notice that the positive sign to the right hand side summational term of eq. (6)
is guaranteed by the second law of thermodynamics, namely by eq. (2) above.
Now on substituting eq. (6) into eq. (4), we obtain

S _p1dU, odV T"zu dn,

dt ~ dt dt k- dt )

which is the Gibbs relation in the time rate form for closed systems. It needs to
be remembered that dn, of eq. (7) are the changes in mole numbers due to the
participation of the components of the system in a chemical reaction. To describe
this latter aspect explicitly we recall that no mole number change occurs
independent of the others if these changes are due to their participation in a
chemical reaction. The Dalton law of constant proportions relates them as™:

dnk = Vk dg (8)
where v, are the stoichiometric coefficients taken positive for the products and

negative for the reactants and & is the extent of chemical reaction. Thus on
incorporating eq. (8) into eq. (6), we have

a _ ,d8
a = a2 ©)
where the chemical aftinity, 4, has been defined as usual as™%:
A=-Z Vg (10
k

The form of eq. (9) is a typical one. d&/dt is the rate of the chemical reaction and
hence 4 is obtained as its driving force. That is, eq. (9) consists of a force
multiplied by the corresponding displacement. Finally, on using egs. (8), (9) and
(10), eq. (7) reads as

a8 _ - dU | 4 dV i dE
il St e N (11

which is the same equation derived earlier by the de Donderian school®. In their
derivation they have used the following inequality, namely,

dQ

ds > T (12)
whose origin, as elaborated in the preceding paper*, was not clear at that time
(that is 5-6 decades ago). Perhaps it could be this very reason that though
Prigogine and Defay in the introduction of their classic .monograph®® have
asserted that the chemical thermodynamics needs to be an irreversible one but
the text of the said monograph hardly makes a clear distinction between the
thermodynamics of a chemically reactive closed system carried along a reversible
and an irreversible path. Neither this latter aspect is attended to in any of the later
expositions based on the de Donderian approach. Thus from the above it is clear
in conformity with the Belgian school that if § appears as an independent variable
in a thermodynamic-description, then the latter is indeed an irreversible thermo-
dynamic one.
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An Alternative method for the Quantification of dQ’

In this method (which is akin to the one followed in GPITT“‘“) we first
rearrange eq. (4) which yields

4 _E d(U +pV - TS)
dt Sdt -V dt 13)

Notice that the term (U + pV — TS) in eq. (13) has not been supplied by us from
outside but appears naturally on its own which is nothing else but the Gibbs
function, G, namely:

U+pV-ST=G (14

Hence eq. (13) reads as :
_dQ _ dT _,dp dG

a Sa Vat 15

Recall that the last term cn the right hand side of eq. (4), namely the
uncompensated heat, dQ’, appears on account of irreversibility. In the case under
consideration the origin of irreversibility lies in chemical interactions. Therefore,
it is needed to manipulate the right hand side of eq. (15) so that there survive
only those terms which primarily originate from chemical interactions. In the
present case the chemical interactions are those by which the chemical composi-
tion of the system changes on account of a chemical reaction occurring at a finite
rate. The chemical composition determining parameters obviously are the mole
numbers, n,, which need to be multiplied by the corresponding potentials which
determine the intensity of chemical interactions. The latter ones in the present
case are W,’s. Moreover, let us rewrite eq. (14) as

U=TS-pV+G (16)

which clearly states that the internal energy of the system is made up of the
contributions originating in thermal (TS) and mechanical (—pV) interactions and
the term G whose origin must lie in the chemical interactions. Thus it is clear that
in thermodynamics G basically quantifies the chemical interactions. Recall that
in the physical world there are only these three categories of interactions>"” 52 (the
mechanical interactions in the most general case include contributions from the
actions of body and contact forces on the system) and hence the thermodynamic
description of a system needs to be based only on these three interactions whether
it is the case of equilibrium or nonequilibrium.

Therefore, a proper expression for dQ’ can only be amved at if we use a correct
expression ior the Gibbs function, G. Thus in the present ease in view of G being
an extensive quantity it is expressed as

G= E Myny a7

where as introduced herein the chemical potential, L, is the partial molar Gibbs
free energy of the component k. Next on substituting eq. (17) into eq. (15) we
obtain two relations. One is eq. (6) and the other is the time rate form of the
Gibbs-Duhem equation, namely:
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d
S%—V%%-i—f nk%=0 (18)
Notice that the extracting out of the Gibbs-Duhem equation from eq. (15) is not
dictated by the fact that we already know the expression of eq. (6) by another
method but there are two reasons of it. Firstly, if we do not extract it out then on
substituting eq. (15) into eq. (4) an identity is obtained and not a functional
dependence. Secondly, the incorporation of eq. (17) in eq. (15) produces an
expression which has terms having their origin in thermal and mechanical
interactions along with those determining the chemical interactions. But dQ’
should consist of only those terms having their origin in chemical interactions
and that too consisting of the corresponding extensive parameters as variables.
Thus, we have established that during the said irreversible evolution of the
system the Gibbs-Duhem equation is rigorously followed. That is, no ther-
modynamic description exists without its Gibbs-Duhem equation which describes
a unique mutual control on the variation of intensities of the system. This we have
stressed earlier t0o>*7%. From here onwards we arrive at egs. (7) and (11) in
identically the same steps as described in the preceding sub-section.
From the above discussion we see that in the case of nonequilibrium considered
herein we have the following equation of state for the chemical potential (cf. eq.

(7)), namely, . _
B (98
- T - (aﬂk) (19)
U, Vony

This is identically the same expression, as far as the thermodynamic parameters
involved are concerned, which one has in the thermodynamics of equilibrium
states of open systems'? > as described earlier.”® The only difference is that all
the quantitfes involved in eq. (19) are basically the time dependent ones. Also in
eq. (19) we have a quantitative expression of component-wise chemical interac-
tion because the thermal, the mechanical and the chemical interactions of rest of
the components have been frozen by keeping U, V and n;, constant. Thus eq.
(19) establishes that the physical contents of p, remain identically the-same in
going from an equilibrium to a nonequilibrium situation.

Since in the present case the chemical interactions are manifested in the
occurrence of a chemical reaction at a finite rate, a single compositely quantifying
expression of the chemical interactions is obtained from eq. (11) as

’ a_(9s
(%), @0

which is the de Donderian equation of state of chemical affinity.
Similarly, on the front of thermal interactions let us compare the equation of
state of temperature obtained in the thermodynamics of equilibrium states (closed

systems), namely:
o _(9S
T = (—GU)V 1)
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with the one give by egs. (7) and (11), namely,

@, e

V,n, V. &

Recall that the partial derivative of eq. (21) is the tangent to the curve in S, U
and V space. Since S, U and V are the time independent quantities (because it is
the-case of reversibility) any change in U and V along a reversible curve not only
brings about a corresponding change in S but also if the closed system is
chemically reactive its chemical composition will change due to the concomitant
internal chemical conversion. But as can be seen from the above discussion that
the internal chemical conversion does not remain an independent process along
a reversible path. Therefore, on keeping V constant in a reversible transition one
allows only the thermal interaction to cause a change in the state of the system.
That is, eq. (21) is a thermodynamic quantification of the thermal interaction
along a reversible path. Similarly, since n, and £ become independent variables
in the respective thermodynamic set-ups in the case of the existence of an
irreversibility due to the occurence of a chemical reaction at a finite rate it is now
required to specify the constancy of V and n, or V and & in order that only the
thermal interaction of the system with its surroundings is allowed to cause a
change in the state of the system. This is what is precisely expressed'in eq. (22).
Indeed, since the nature of the thermal interaction cannot be of different type
whether the system is in equilibrium or in nonequilibrium, hence the temperature
T of eq. (21) is essentially the same physical entity as that of eq. (22). Moreover,
notice that in the thermodynamic description of a closed system the chemical
interaction remains submerged in the basic thermodynamic framework in the
event of reversibility while it surfaces out only if there exists an irreversibility in
it. This is so because the process occurring due to the chemical interaction is an
internal one which in the present case is the process of chemical conversion.

Some of the Thermodynamlc Deductions

Equation (9) demands that the signs of 2 and d&/dt has to be the same. It is,
therefore, easy to deduce the following from it, namely:

(@ 4> 0, %% > 0  net forward reaction

(b) 2< 0, %%‘ <0 net reverse reaction

(¢) 2=0,d6 =0 chemical equilibrium
(d) 2=0,d6 # 0 the system is carried along a reversible path

(e 2= 0, LU 0  a metastable state. The energy of activation is so high
dt . .
that no observable chemical conversion takes place
The Belgian school has already described®® the deductions contained in (a) to
(c) above. In (c) we have the well known condition of chemical equilibrium.
However, the deductions (d) and (e) are stated for the first time. In (d) we have
the description of reversibility, that is, when a chemically reactive closed system
is carried along a reversible path its chemical composition will change con-
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comitantly due to the internal chemical conversion. Surprisingly, no thermo-
dynamic text describes this fact though it is so apparent in the de Donderian
description. This fact can also be appreciated as follows. As is known, the
equilibrium constant of a chemical reaction is a function of T and p. Hence at
different sets of T and p values for a given chemical reaction there will be, in
general, different chemical compositions at the respective equilibrium states.
Hence, when a chemically reactive closed system in equilibrium at a given T and
p is carried to another set of T and p values the internal chemical composition
needs to and hence will change accordingly. But any two equilibrium states can
be connected by a reversible path. Hence when a chemically reactive closed
system is carried along a reversible path the chemical conversion within the
system will take place to attain the chemical composition demanded by the change
in the equilibrium constant. In (e) above we have a metastable state. One of the
prominent examples of the chemical metastable state is the mixture of hydrogen
and oxygen gases without a catatyst or an electric spark and not too high a
temperature though the water formation is a thermodynamically favourable
process. 32

The condition of (c) when imposed on eq. (10) yields the traditional condition
of chemical equilibrium, namely,

Tvg,=0=2 (23)
k

which according to (d) above needs to be true also along a reversible path®® even
if the chemical composition might be changing on account of the internal
chemical conversion. This latter fact was pointed out earlier t00.34 35

An interesting case is that of the reversible adiabates. On imposing the
condition of adiabaticity on egs. (3) and (11), we have

% -z %? >0 (adiabatic conditions)  (24)

Notice that eq. (24) asserts the traditional thermodynamic deduction that the

occurrence of a chemical reaction at a finite rate produces entropy. Hence if there

exists an irreversibility on account of chemical reactions at finite rates then

entropy of the system under adiabatic condition will increase with time. Now if

we further impose the condition of reversibility (that is a reversible adiabatic
transition) then eq. (24) produces

dS=0 because 4=0thoughd§#0 (25)

Thus it is seen that the isentropicity gets perfectly maintained along a reversible
adiabatic path even if the chemical composition is simultaneously changing due
to the internal chemical conversion in the case of chemically reactive closed
systems. This reveals that how strong are the reversible adiabates in maintaining
the ;a4nt3rsopy of the system (closed) constant. This fact we have spelt out earlier
too.” "

As pointed out in the past™ it is often misinterpreted that the de Donderian
eq. (11) is compatible with the Gibbs relation derived in equilibrium thermo-

dynamics and vice-versa>”>* 35, The reason for this falling prey to a trap is
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twofold. Firstly, when the Belgian school derived eq. (11) using eq. (12), it seems
that there was no clear idea whether the entropy function contained in the latter
equation is of an equilibrium state -or of a nonequilibrium state. Secondly, it is
hardly realized that the traditional Gibbs relation, namely,

TdS=dU+pdV -2 p, dn, (26)
k

- does not contain a contribution from mole number changes on account of the
internal chemical conversion when the system is carried reversibly from one
equilibrium state to another. Recall that the mole number change in the Belgian
school notation is expressed as> %

dnk = dink + denk (27)

where the subscripts i and e refer to the internal and exchange respectively. Thus
when an open system is carried along a reversible path the correct version of the
Gibbs relation describing such transitions is

TdS=dU+pdV -, d.n, (28)
k

because eq. (23) obviously needs to be valid in this case too. Notice that on
imposing the constraints of a closed system on eq. (28) one obtains the Clausius’
differential relation (this name seems to have been coined by Blinder’®) namely:

TdS=dU+pdV (29)

which in standard steps is obtained for the closed systems carried along a
reversible path, directly on combining the equilibrium parts of the mathematical
statements of the first and the second laws of thermodynamics'> '3 3% 52 jrrespec-
tive of the system being chemically reactive or not. Notice that eq. (26) when
subjected to the closed system constraints yields eq. (7) in the following form,
namely,

TdS=dU+pdV - X py din, (30)
k

and not eq. (29). Therefore, eq. (26) as such is not a description of an open system
carried along a reversible path. Since eq. (23) is rigorously followed along a
reversible path eq. (28) and (29) do not exclude the concomitant chemical
conversion taking place within the system when it is carried along a reversible
path if the components comprising the system happen to be chemically reactive
ones. Thus when djny is retained in eq. (26) it simply means that one is dealing
with a chemical reaction occurring at a finite rate and hence one, in fact, is doing
IT and not the equilibrium one. Therefore, it is clear that the chemical
thermodynamics of a closed system in which the chemical composition determin-
ing extensive parameters are taken or appear as independent thermodynamic
variables is indeed an IT description which, unfortunately, has not been eémphati-
cally acknowledged so far.

Finally, there we have one and the same accompanying Gibbs-Duhem equation
to egs. (26) and (28) to (30), namely,
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SAT-Vdp+Zn, du, =0 31)
k

That is, there is no distinction between the reversible and irreversible transitions
from the point of view of the validity and the contents of Gibbs-Duhem equation
which indeed should be in the time rate form in the case of irreversibility. Notice
that egs. (26), (28) and (30) have (N +2) independent extensive variables but
correspondingly only (N +1) conjugate intensive variables can be varied inde-
pendently according to the Gibbs-Duhem equation. The latter deduction remains
true also in the case of a N-component closed system carried reversibly though
there we have only two independent extensive variables [cf. eq. (29)]. This latter
conclusion holds good whether the closed system happens to be chemically
reactive or not.

Concluding Remarks

In our pursuit to develop an IT framework based on the laws of thermo-
dynamics we have recently generalized the zeroth law of thermodynamics which
brings in its fold the nonequilibrium states and hence the temperature concept for
the nonequilibrium states gets a thermodynamic legitimacy®. In the preceding
paper*® we have described by using Eu’s approach?” how to arrive at the entropy
function for nonequilibrium states. In this approach a proper manipulation of the
Clausius inequality is undertaken which generates an entropy function for
nonequilibrium states both at the global and the local levels of descriptions in
which the temperature function guaranteed by the generalized zeroth law of
thermodynamics appears. The rate of entropy change expression so obtained
contains the Clausius unconsummated heat whose quantification and the coupling
of the former with an appropriate expression of the first law of thermodynamics
generate the corresponding basic thermodynamic framework. It gets revealed that
the quantification of the uncompensated heat is intimately entwined in the
identification of a proper expression for the Gibbs function. The latter function
primarily takes care of the existing chemical interactions.

This methodology is exemplified by applying it to a spatially uniform closed
system having irreversibility only on account of a chemical reaction occurring at a
finite rate. This reconfirms that the de Donderian thermodynamic framework™ is
basically anirreversible one. Notice that we have used herein a proper version of the
Clausius inequality whereas the approach described by the Belglan school*
remains ambiguous on this count, as described in the preceding paper'® with regard
to eq. (12) of this paper. Moreover, we have also described some of the relevant
deductions and clarified certain existing ambiguities. In a forthcoming paper the
above methodology will be applied to a non-uniform system.
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