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Meixner’s revelation in connection with the nonclarity about the
entropy function contained in the differential form of Clausius’
inequality led us to reinvestigate the foundational aspects involved
therein. It is proved that the differential form of Clausius’ inequality
contains the entropy function for nonequilibrium states. We have
also augmented the cyclic form of the Clausius’ inequality to in-
clude those nonequilibrium situations wherein the system simul-
taneously interacts at the different positions of its bounding surface
with the heat reservoirs of different temperatures. It gets once again
established that no local level Clausius’ inequality analogue can
ever be devised if the system has a spatial nonuniformity. Contrary
to Meixner’s apprehension one obtains an unique time dependent
entropy function from the cyclic form of Clausius’ inequality.

INTRODUCTION

Meixner points out! in his paper of 1973 that Clausius first makes the following
" combined statement for reversible and irreversible processes, namely:

B
S(B) - S(A) zfA 9,19 o))

where A and B are the end equilibrium states, S is the entropy of an equilibrium
state (very emphatically stated so by Clausius), the right hand side integration in
the case of equality is taken along a reversible path between the states A and B
and in the case of inequality the integration is taken along a path involving
irreversibility and dQ are the differential elements of heat exchanged by the closed
system with the heat reservoirs of temperature T. Obviously, in the case of
reversibility T becomes identically equal to the temperature of the system.
However, a few years later he (Clausius) gives the inequality in the differential,
form', namely:

dQ
ds 2 2)

Obviously, eq. (2) carries in impression that S in it is the entropy of nonequi-
librium states falling within the irreversible process.
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Notice that, in eq. (1) the left hand side difference in the values of entropy is
totally immune to the change of paths between the equilibrium states A and B
not only from one reversible to another one but also from a reversible one to
those involving irreversibility.

Indeed it is true that the left hand side difference in entropy of eq. (1) is a
result of a definite integral, namely,

B
S(B) - S(A) = IA ds 3)

provided that the integration is taken along a reversible path. However, as long
as one does not establish an entropy function for nonequilibrium states he simply
cannot assert that the right hand side integral of eq. (3) can be equally taken for
the paths involving irreversibility. Therefore, if it is argued that eq. (1) and (3)
lead us to eq. (2) it would be an incorrect assertion. Since eq. (3) is true for a
reversible path, eq. (1) can be expressed as (for the sake of clarity we are
specifying the nature of paths by ‘irr’ for irreversible ones and by ‘rev’ for the
reversible ones),

B B
d .
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J'A >JA T @)
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Since on both the sides of eq. (5) the integration can be chosen for the
identically same reversible path, from it one has the Clausius entropy expression,
namely:

dS = % (rev) (6)

However, it is necessary to state that the reversible part of the statement of the
second !aw of thermodynamics directly gives eq. (6) and the irreversible part of
it gives the Clausius inequality in the cyclic integration form?, namely:

»

‘f (,jr& <0  (closed systems) @)
A

1

from where in the customary steps, which involves the use of eq. (6), one is led
to eq. (1). Thus, one should not consider the steps from eq. (1) to eq. (6) as the
primary derivation of eq. (6). Notice that in eq. (7) we have used the subscript R
to stress that the temperature appearing therein is that of the heat reservoirs
coming in thermal contact with the closed system during its cyclic operation. Also
the inequality of eq. (7) pertaining only to the closed systems has been specified
therein. The fact that for open systems neither such an inequality exists nor can
be devised has been established earlier®

The type of the mathematical manipulation which gives eq. (6) from eq. (5)
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as described above cannot be followed with eq. (4) because no reversible path
can be coincided with an irreversible one between the same two end equilibrium
states. Therefore, both the integrands of eq. (4) remain unconnected to each other.
‘Indeed, when the equilibrium states A and B are chosen such that on a given
reversible path they have the relation

S(B) = S(A) +dS (8)
then eq. (4) reads as
B
dQ
ds >‘fA T ©)
irr

The right hand side integration of eq. (9) cannot be suppressed because as said
above the two sides of this equation correspond to two different paths and also
its integrand is not an exact differential (it is a result of the existence of
irreversibility).

Thus it is clear that eq. (2) is not merely a differential form of eq. (1) nor was
it claimed by Clausius himself. Since Clausius did not give any argument in favour
of or proved the origin of eq. (2) as pointed out earlier, it remains a mere
speculation that in his mind he was considering that the differential change on
the left hand side of it is to be taken along the same irreversible path on which
the right hand side of it has been prescribed. However, this conjecture needs to
be rigorously proved.

From irreversible thermodynamic point of view there are two aspects which
need to be made clear. Firstly, is it possible to establish, starting from the second
law of thermodynamics, a time dependent entropy function for a system in
nonequilibrium and then a time and position dependent entropy function at a local
level. Secondly, can one have the local level Clausius’ inequality analogue for a
system in nonequilibrium. In this paper we have also answered these questions
which in turn provides a base for developing an irreversible thermodynamic
description starting from the global level statements of the laws of thermo-
dynamics.

The Time Dependent Entropy and Clausius’ Inequality

Eu’s method

Let us consider a closed system carried along an irreversible cycle and having
no nonuniformity of temperature within it and across its boundaries. Hence, for
the case under consideration the Clausius inequality, eq. (7), reads as:

Q

55 7<0 (10)
1T

the subscript R to T is obviously redundant in this case. Since an irreversible

cycle involves the time rate of exchange of energy it is better to express eq. (10)

as:
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fﬁT(t)—d?(t) dt<0 (11

Notice that the time ¢ dependence of the quantities has been expliciated in eq.
(11). Next we proceed to follow the procedure earlier adopted by Clausius®,
- Eu>® and Eu and Garcia-Colin’. In this method an uncompensation function, N,
is defind as,

43 70 dt 9Q 1y dt>0 (12)
and as suggested by Eu”’ it is then treated as an independent quantity to give
1 dN
=$ —— Y70 a W wdi>0 (13)

Notice that the positive sign to N is guaranteed by the second law of thermo-
dynamics which vanishes only in the case of reversibility. Further, as argued by
Eu, dN has to have positive values along the irreversible segments of the cycle
and should identically vanish along its reversible segments. This may also be
appreciated by recalling that an irreversible process inherently has a definite arrow
of time, hence there remains no reason or logic which will allow a positive sign
to dN along a certain irreversible segment of the cycle and negative values to it
along its rest parts of the irreversible segments. That is the second law of
thermodynamics rigorously gives,

N20, dN20 (14)

where the validity of the equality is under the condition of reversibility.

Next on combining eqs. (12) and (13), we get

1 dQ
é[T(t) dt O+G dt (‘)]d‘“ (13)

Since the cyclic integral of eq. (15) vanishes its integrand is obtained as an exact
differential. Hence, the time dependent entropy function, S(t), within an additive
constant, gets identified as

s _ 1 dQ
et e CREC 16)

In almost all previous expositions*”’ N has been termed as the uncompensated
heat but as it can be seen from the above equations its units are energy per degree
and hence we have coined the term uncompensation function for it. The
uncompensated heat® denoted by dQ’ can be easily introduced as,

dN 1 dQ

a O 1 a ©>0 a7
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that is, the second law of thermodynamics guarantees that,
dQ’ =0 (18)

where the equality holds in the case of reversibility. Thus on using the uncom-
pensated heat eq. (16) reads as:

S®_ 1 dQ . 1 dY
a 1o dt VT a @ (19)

Notice that for developing an irreversible thermodynamic description based
on the laws of thermodynamics it is required to obtain a proper expression for
dQ’. Since dQ’ appears only on account of irreversibility one is required to know
what type of irreversibility exists and what is its origin in terms of the fundamental
interactions. Moreover, from the above derivation it is clear that the time
dependent entropy, S(t), of eq. (16) and hence that of eq. (19) is rigorously based
on the second law of thermodynamics and is obtained as a unique function. The
latter assertion stems from the fact that S(t) has been defined on a given particular
irreversible path. Eu’ calls it as calortropy but we have retained for it the name
entropy because it is given by the second law of thermodynamics and none else.
Further, in view of egs. (14) and (18), both from egs. (16) and (19) we rigorously
obtain the following inequality, namely:

dsm 1 dQ
at > T@ at P (20)

which is none else than the second Clausius’ inequality, namely eq. (2), but in an
elaborated form. Thus we have proved on the one hand the correctness of
Clausius’ nonelaborated assertion which Meixner has pointed out' about eq. (2)
and on the other hand that the inequality of eq. (2) cannot be prescribed directly
even from the cyclic form of Clasius’ inequality, eq. (10), whereas eq. (1) directly
follows from eq. (10) because eq. (6) is independently given by the second law
of thermodynamics. Therefore there remains no ambiguity that eq. (2) contains
entropy, S, of nonequilibrium states and hence is a time dependent one.

If there exits a nonuniformity of temperature within the system, then in-
stead of eq. (10) one needs to start with eq. (7) and hence instead of eq. (16) one
obtains

as@__1 dQ
at TR(t) at (t)+ () 21

Thus we see that a unique time dependent entropy, S(t), is elegantly obtained in
this case too. The only uncomfortable part in eq. (21)-is that it contains the
temperature of the heat reservoirs and hence the corresponding irreversible
thermodynamic description if developed using it will have a temperature function
which is foreign to the system. But the system does not have a unique single
temperature because of the existence of the temperature gradient. This clearly
drives us'to go for a local level description instead of the global level of it which
is considered so far in the above discussion. As far as the Clausius inequality is
concerned we now have, instead of eq. (20), the following, namely,
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a8, 1 dQ
dt >T © a (22)

which is a yet another elaborated form of eq. (2) but a more general one than €q.
(20). Indeed, one can introduce the uncompensated heat, dQ’, in eq. (21) which
gives

aswm__1 dQ . 1 dQ’
dt TR(t) a OFT (t) a O , (23)

However, the problems for developing an irreversible thermodynamic descrip-
tion from eq. (23) remain the same which, as discussed above, are associated with
eq. (21).

In the above discussion we have derived Clausius’ inequality, namely egs. (20)
and (22), which has been worked out herein for the first time while the rest part
of the above description is largely due to Eu>~". However, in his writings Eu has
not used the subscript R to T which we suppose is implied therein.

The local level description

There is an inherent difficulty in transforming eq. (21) and (22) and also eq.
(23) into the corresponding local level forms because they contain the temperature
of the heat reservoirs which do not make a direct thermal contact with an interior
position of the system. However, the problem can be handled in two different
ways. In the first choice one can easily transform eq. (16) or eq. (19) into the
corresponding local level form and then see if it is possible to extract therefrom
the local form of Clausius’ inequality. In the second choice one first converts eq.
(7) into a local form and then uses it to directly arrive at the time dependent
entropy at the local level which obviously would be position dependent too. Then
see if a local form of the Clausius’ inequality can be arrived at therefrom. We
now proceed to describe both the choices. The following discussion also confirms
our earher assertion, namely, one cannot have a local form of Clausius’
mequahty

A. The systems with uniform temperature

Since eq. (15) establishes the entropy function, S(t), for a global system in
nonequilibrium, the left hand side of eq. (19) gives

Q%EQ I( t)—LL)-srth 24)

where s is the per unit mass entropy, V is the total volume of the closed system,
r is the position vector and p is the mass density. While for the two terms on the
right had side of eq. (19), we have

QA, )
T\t) dt B0 I Ty 9A 23

T(t) dt () J. T(z) p(r, ) (r, t)dV 26)
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where A is the total bounding surface area of the closed system, A is the surface
area coordinate on the bounding surface, dA is the differential element of the
surface area vector, Q is the heat flux density vector and dq” is the per unit mass
differential element of the uncompensated heat. The minus sign in eq. (25) stems
from the fact that by convention the outward normal to the bounding surface is
‘taken positive. Next on applying the Gauss theorem® the right hand side surface
integral of eq. (25) gets converted to the corresponding volume integral and hence

we have
_1 dQ q(r. )
@ 0" f dlv( o ]dv @7

where q is the so called heat flux density vector. Notice that we have used the

symbol q(r, t) instead of Q(r, t) to stress the fact that the open system features

are associated with every interior position which is not the case with Q on the

bounding surface of the closed system. Next, on substituting egs. (24), (26) and
(27) into eq. (19), we have

fp(r t)—ir’—ldV f dw(ﬂg—2 v+ [ =

Q‘l’
T(t) p(r, ) = (r, ) dV (28)

T(t)

Thus from eq. (28) we obtain the local level entropy balance equation namely:
3 q) 1 dq
p div [T T =p— at 29)
Now it is important to note that even though the uncompensated heat, dQ’ is a

positive quantity the same property is not inherited by its local level counterpart
dq’ because with the latter the irreversibility having its origin in the open system
features is also associated. Hence, it is simply not possible to derive the local
level analogue of eq. (20) from eq. (29). On the other hand, one may wrongly
think that one can convert eq. (20) into the corresponding local form on using
egs. (24) and (27). Of course, one can use the latter two equations in the former
but then one cannot suppress the integrals on both the sides of the inequality so
obtained because the inequality of eq. (20) holds only for the closed systems and
there is no way to guarantee that it would hold for open systems too. That is,
one cannot suppress the integrals on both the sides of the following inequality,
namely,

[oavs] dlv[ JdV (30)
v v

obtained from eq. (20). If it is done then the result wonld be that for a tiny open
system but having no guarantee of its validity. This is in conformity with our
previous demonstration® that no Clausius’ inequality exists for open systems and
cannot be ever arrived at. Notice that in the preceding two equations we have not
depicted the r and t dependences of the physical quantities for the sake of
simplicity but they are implied and remain true also in the equations described
below.
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In the next sub-section we are considering the most general case.

B. A most general case

If we use eq. (7) it implies that at a given instant of time during a cyclic
operation the system makes a thermal contact with a single heat reservoir. This
restriction gets removed by expressing eq. (7) as

A, t
é J.—%m%)l-dAdt<0 (€1))
ir A

That is, eq. (31) accommodates the situations in which at a given instant of time
the closed system makes the thermal contacts with different heat reservoirs
obviously at different positions on its bounding surface. Thus eq. (31) serves as
the most general global level statement of the Clausius’ inequality. It is also
obvious that the temperature of the surface area element, dA, on the outer face
of the bounding surface of the system cannot be different from that of the heat
reservoir making a thermal contact with it. This is so because the temperature
measurement involves a dynamic thermal equilibration of the position in question
with the temperature measuring device. The time required for the thermal
equilibration is of the order of nanoseconds or even less,'® ! Thus the temperature
function is not amenable experimentally before the time required for the thermal
equilibration and during this period a thermal equilibration (dynamic) would be
achieved between the bounding surface of the system and the heat reservoir
making a thermal contact with it. Also we have earlier described'? how the quality
of temperature remains the same in going from a heat reservoir to the bounding
surface (of the system in nonequilibrium) to an interior position of a system (in
nonequilibrium). This establishment imparts the required legitimacy to the
temperature function appearing. in eq. (31). The said legitimacy we have
independently established recently by generalizing the zeroth law of ther-
modynamics so that the nonequilibrium states too come in its fold"3. This in turn
paves the way to apply the Gauss theorem® to the surface integral of eq. (31).
Hence, eq. (31) transforms to,

()
§ [ —dzv(m)dVdKO} | (32)
ir V

Next we manipulate eq. (32) exactly on the same lines which gives eq. (16) from
eq. (11). Thus the uncompensation function, N, is obtains as

N=§ dN=-¢ f—div[%)dVd»o 33)
irr ir Vv
and for dN eq. (14) holds good as described above. Now we transform N into the

local uncompensation function, A((r, t), per unit mass, as

$an=¢ [oXavar>o (34)

irr irr V
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Since on the right hand side of eq. (34) there are two noninterchangeable
integrals'* it is not possible to directly make any assertion about the sign of d\;
Now on substituting eq. (34) into eq. (33) and rearranging, we obtain

$ [[ dw(q]m‘;ﬂdvm:o (35)

ir V
Since the cyclic integral of eq. (35) vanishes it is now possible to exchange the
order of integration in it. Hence, we obtain

&[ dlv( )+pddﬂm=o (36)
irr
The vanishing of the cyclic integral of eq. (36) establishes that its integrand is an

exact differential and hence the position and time dependent local level entropy,
s(r, t), as a state function, is provided as

ds _ a
P g™ dw( J+p m @37

Indeed, one can introduce the uncompensated heat, dq’, as

7

an=& (38)

However, since there cannot be a definite assertion about the sign of dA(it is not
possible to assign the positive definite sign to dq’. But one, indeed, can substitute
eq. (38) into eq. (37) which gives eq. (29). Notice that egs. (33) to (38) contain
the time and position dependent temperature function provided by the generalized
zeroth law of thermodynamics'?.

Indeed, it is not possible to get a local level analogue of the Clausius’ inequality
from eq. (37) and hence from eq. (29) too. This conforms very well with our
earlier demonstration® that no Clausius’ inequality exists for open systems nor
can be ever devised. However, only in those nonequilibrium situations in which
each interior position of a system remains devoid of irreversibility due to the
open system features, that is each interior position behaves as if it were a tiny
closed system (in fact, the interior positions are the point masses from the
macroscopic point of view but consist of a very large number of molecules®),
then eqs. (29) and (37) give the following local form of the Clausius inequality,
namely:

q
— 9
p > ~div (T) (39)
because in this case on= rigorously has
dq'20 40)

In practice this situation is met in spatially uniform systems having irreversibility
only on account of chemical reactions occurring at finite rates. But then in this
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case the global level equations remain adequate for developing an irreversible
thermodynamic description and hence there is no need to go for the local level
description. This we are describing in a separate paper'>. However, in a general
nonequilibrium situation eq. (29) or eq. (37) can indeed be used to develop an
irreversible thermodynamic description, in spite of the nonavailability of a local
level analogue of Clausius’ inequality. This subject matter we will discuss in a
separate paper'®.

Concluding Remarks

In thermodynamic literature the Clausius’ inequality is stated in three different
ways, namely, egs. (1), (2) and (7) or (10). Herein we have restressed that eq. (7)
is a direct consequence of the second law of thermodynamics and hence it is a
primary version of the Clausius inequality. If the Clausius inequality is expressed
in the form of eq. (10) without stating that T in it is the temperature of the heat
reservoirs which come in contact with the closed system during its cyclic
operation, then an ambiguity creeps in about its generality. That is, one would
tend to exclude the irreversibility associated with the heat exchange between the
system and the heat reservoirs coming in its contact. In this paper, we have further
augmented eq. (7) and the result is eq. (31). The later version of the Clausius’
inequality is the most general mathematical statement because it also includes
those situations in which the closed system simultaneously interacts thermally
with the heat reservoirs of different temperatures. That is, the elements of heat
exchanged at different positions on the bounding surface of the closed system
correspond to different temperatures at a given instant of time.

From irreversible thermodynamic point of view it is essential to know whether
egs. (1), (2) and (7) are the equivalent statements of Clausius’ inequality or not

and whether they contain the same physical entities. Meixner has raised a question

with respect to the origin of eq. (2) because Clausius did not give its derivation.

In this paper we have first elaborated that eq. (2) is not a mere differential form N

of eq. (1) and hence the former equation does not contain the entropy of an
equilibrium state. However, to show that eq. (2) indeed contains the entropy of
a nonequilibrium state one needs to first establish a time dependent entropy
function. But the second law of thermodynamics does not directly provide an
entropy function for nonequilibrium states. This problem we have earlier circum-
vented while formulating the generalized phenomenological irreversible ther-
modynamic theory (GPI'I'I‘)”_”, by identifying a universal inaccessibility
principle (UIP) which leads directly to the time and position dependent entropy
function and recently by Eu® wherein he begins with eq. (10) and arrives at eq.
(16). As can be seen from the derivation of eq. (16), the time dependent entropy
so obtained is an unique function. The same is true for the entropy function
obtained through UIP which clearly dispels Meixner’s apprehnsion’ that no
unique entropy function exists in nonequilibrium. The origin of eq. (2) has been
established by using egs. (16) and (21). This clearly demonstrates that eq. (2)
does contain the entropy function of a nonequilibrium state. Thus egs. (20) and
(22) are obtained as the more elaborate versions of eq. (2)

-
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