Kinetic Parameters from TG Analysis of Chloroaquobis(3-Methyl-4-Amino-5-Mercapto-1,2,4-Triazole) Copper(I) Complex

ASHOK KUMAR[†], BIJAY KUMAR SINHA[†], GIRISH PRASAD[†], REWATI KANT* and SANJEEV KUMAR P.G. Department of Chemistry Magadh University, Bodh Gaya-824 234, India

In the present work, we describe the kinetic parameters from TG-analysis of a copper(I) complex.

INTRODUCTION

The rate of thermal decomposition is determined by the rate of one or more of these stages. Sometimes the rate-determining stage at the beginning of the pyrolysis may lose its significance and later another stage can take its place.

The decomposition rate of a TG curve can be defined as $-d\alpha/dt$ where α stands for the fraction of the initial compound undergoing reaction. In isothermal conditions it may be presumed that the reaction rate is dependent only on the fraction reacted.

$$-\frac{d\alpha}{dt} = K\alpha^n$$

where n is the order of reaction and K the specific rate constant. The specific rate constant depends upon the temperature by the expression

$$K = A \cdot e^{-E/RT}$$

where A is the pre-exponential factor, E the activation energy and R the gas constant.

EXPERIMENTAL

An electrobalance with a recorder operating at 1 mV full scale was used for obtaining the thermograms. A chromelalumel thermocouple was placed 3-4 mm below the sample holder. A platinum boat (2 mm × 8 mm dia) was used for recording the sample temperature. A heating rate of 10° min⁻¹ was employed and chart speed was maintained at 120 mmh⁻¹. Calculations were carried out from a single TG curve.

Synthesis of Complex: A methanolic solution of hydrated cupric chloride (0.01 M in 50 mL) was treated with hot methanolic solution of 3-methyl-4-amino-

[†]P.G. Department of Chemistry, Gaya College, Gaya (Bihar)

356 Kumar et al. Asian J. Chem.

5-mercapto-1,2,4-triazole ligand (0.025 M in 100 mL) and refluxed on a steam bath for 20 minutes, when a faint yellow complex separated out. The precipitate was filtered, washed several times with aqueous methanol to remove excess of reagents and dried in a desiccator over CaCl₂.

RESULTS AND DISCUSSION

The kinetic parameters of the complex have been calculated by both Freeman and Carroll methods¹ and Zsako method.³

Freeman and Carroll suggested a linear relationship between

$$\Delta \log \frac{dW}{dt}/\Delta \log W_r \quad \text{and} \qquad \Delta T^{-l}/\Delta \log W_r,$$

where $W_r = (W_c - W)$ and W_c is weight loss at completion of reaction, W the total weight-loss up to time t and T the absolute temperature. The intercept -X of the straight line plotted from the evaluated values for the equation indicates the order of reaction and the slope indicates the energy of activation E_a to $E_a/2.3R$. The reaction order and the activation energy of the compound have been evaluated as 1.0 and 13.88 kcal mol⁻¹ respectively for the second transformation stage under consideration.

These values were compared with the method of Doyle² as modified by Zsako³. Doyle's equation for TG curve is

$$g(\alpha) = \frac{ZE_a}{Rq} P(x)$$

where Z is frequency factor, E_a the activating energy, R the gas constant and q the heating rate. The value $g(\alpha)$ is a certain function of α and

$$\alpha = \frac{W_0 - W}{W_0 - W_*}$$

where W, W_0 and W_t are the actual, initial and final weights of the sample respectively. The $g(\alpha)$ is calculated for various orders of decomposition from the equation

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \mathrm{K}(1-\alpha)^{\mathrm{b}}$$

where b is the order of reaction. For b = 0, $g_0(\alpha) = \alpha$, for b = 1, $g_1(\alpha) = \ln\left(\frac{1}{1-\alpha}\right)$ and for b = 2, $g_2(\alpha) = \left(\frac{\alpha}{1-\alpha}\right)$ The values of B_0 , B_1 and B_2 have been calculated in the present case from the

The values of B_0 , B_1 and B_2 have been calculated in the present case from the equations given herein with the help of the data for $g(\alpha)$ and $-\log p(x)$ at different temperatures. B_0 , B_1 and B_2 are the constants of the difference $\log (\alpha) - \log p(x)$ for zero, first and second order reactions respectively, which provide information to suggest a quantitative method for determining the apparent activation energy consistent with a given function $f(\alpha)$.

$$b = 0;$$
 $B_0 = \log \alpha - \log p(x)$

b = 1;
$$B_1 = \log \left(\ln \frac{1}{1 - \alpha} \right) - \log p(x)$$
b = 2;
$$B_2 = \log \left(\frac{\alpha}{1 - \alpha} \right) - \log p(x)$$

and the values of $g(\alpha)$ are given in Table-1.

TABLE-1

S. No.	Temp. (°C)	W (mg)	$\log \alpha$	$\log\left(\ln\frac{1}{1-\alpha}\right)$	$\log\left(\frac{\alpha}{1-\alpha}\right)$
1.	140	5.64	-1.32221	-1.31175	-1.30111
2.	150	5.59	-1.11136	-1.09400	-1.07639
3.	160	5.48	-0.84500	-0.81207	-0.77817
4.	170	5.42	-0.74818	-0.70617	-0.66276
5.	180	5.32	-0.62324	-0.56554	-0.50516
6.	190	5.15	-0.56940	-0.38255	-0.28945
7.	200	4.92	-0.32221	-0.18934	-0.04139
8.	210	4.74	-0.23408	-0.05776	0.14612
9.	220	4.57	-0.16461	-0.06207	0.33641
10.	230	4.28	-0.06694	0.28911	0.77814

 $W_0 = 5.64$ mg. $W_t = 4.04$ mg

For quantitative evaluation of the value of E_a the arithmetical means of B_0 , B_1 and B_2 have been calculated and also the standard deviation δ for all the three presupposed orders of reaction. δ is obtained from the relation,

$$\delta = \sqrt{\frac{(B_1 - \overline{B})^2}{r}}$$

where B_1 is any value, \overline{B} the arithmetical mean and r the number of values. The values for the corresponding B₀, B₁ and B₂ are listed in Table-2.

TABLE-2

B_0		B ₁		B ₂	
E _a kcal/mol	δ_0	E _a kcal/mol	δ_1	E _a kcal/mol	δ_2
10	0.0630056	12	0.0831656	16	0.1187729
12	0.0527149	14	0.0382683	18	0.0917425
14	0.0944639	16	0.0594030	20	0.0998681

It is apparent from Table-2 that the standard deviations are minimum if the first order reaction is accepted, and the value for δ is minimum for $E_a = 14.0$ kcal mol⁻¹ and corresponds to 0.0382683. The value of the arithmetical mean, i.e. \overline{B}_1 , corresponds to 8.656100.

358 Kumar et al. Asian J. Chem.

The frequency factor Z for the solid state kinetics is evaluated and found to be $1.0716 \times 10^4 \text{ sec}^{-1}$ with the help of the equation

$$\log Z = \overline{B} + \log Rq - \log E_a$$

where q is the heating rate and R the gas constant.

The apparent activation entropy, ΔS^{\neq} is calculated as -171.603 eu from relation $\Delta S^{\neq} = 2.303 \log (Zh/KT)$.

The value for T in this equation is the temperature $T_{1/2}$ at which the weight loss is half the total loss during the step of transformation under consideration.

The values for Ea with order of reaction b = 1 by Freeman & Carroll¹ and Zsako³ are 13.88 and 14.00 kcal mol⁻¹ respectively. The values for $E_{a,}$ and b calculated by the procedures mentioned earlier seem to be in good agreement with each other and thus may be utilised in the study of solid state reaction mechanism.

REFERENCES

- 1. E.S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958).
- 2. C.D. Doyle, J. Appl. Polym. Sci., 5, 285 (1961).
- 3. J. Zsako, J. Phys. Chem., 72, 2406 (1968).

(Received: 2 July 1999; Accepted: 26 October 1999)

AJC-1909