NOTE

Synthesis and Antibacterial Activity of Some Benzothiazole Derivatives of S-triazine

PRATIBHA DESAI*, A.C. CHAMPANERI† and K.R. DESAI†

Department of Microbiology, B.P. Baria Science Institute

Navsari-396 445, India

In the present work, authors report the synthesis and antibacterial activity of some benzothiazole derivatives of S-triazine.

A survey of literature reveals that S-triazine, phenyl urea and thiazole derivatives possess a broad spectrum of biological importance. S-triazine and its derivatives have been found to be effective as antitubercular, diuretic¹, antiprotozoal antihistaminic, antimalarial², insecticidal, fungicidal³ and antiviral. Similarly, phenyl urea is used as disinfectant and veterinary medicine⁴, antibacterial⁵ and antispasmodic. The thiazole derivatives have been reported as bacteriostatic⁶ and fungisidic⁷. The aim of the present work is to combine all the above mentioned bacteriostatic compounds and to screen their bactericidal activity against two important groups of bacteria, *viz.*, *E. coli* representing gram –ve group and *S. aureus* of gram +ve group. After synthesizing the compounds their physicochemical characterization has been carried out.

The syntheses of 2-(6'-chlorobenzothiazol-2'-yl-amino)-4-(3'-methylanilino)-phenyl ureido-S-triazine derivatives were carried out by first condensing 2-amino-6-chlorobenzothiazole with cyanuric chloride; this was condensed with m-toluidine and finally refluxed with various aryl ureas to obtain corrsponding S-triazine derivatives mentioned in Table-1. The compounds were then screened for their antibacterial activity against two important genera of bacteria representing gram -ve group and gram +ve group (Tsble-1).

Table-1 shows the antibacterial activity of the compounds along with their chemical and physical characteristics. IR-spectra of the compounds show C_3N_3 stretching vibrations at 820–800 cm⁻¹, secondary amines —NH bending vibrations at 1540 cm⁻¹, substituted urea C=O stretching vibrations at 1615–1600 cm⁻¹ and conjugative cyclic C=N stretching vibrations at 1670 cm⁻¹.

The control drugs ampicillin (10 μ g/mL) and streptomycin (5 μ g/mL) show 24.00 and 20.00 mm respectively against *E. coli* and 28.00 and 16.00 against *S. aureus* respectively which is according to NCCLS standard⁸. The maximum

[†]Department of Chemistry, South Gujarat University, Surat-395 007, India

activity was recorded with 2-(6'-chlorobenzothiazol-2'-yl-amino)-4-(3'methylanilino)-6-phenyl ureido-S-triazine and 2-(6'-chlorobenzothiazol-2'-ylamino)-4-(3'-methylanilino)-6-(2'-methoxyphenyl ureido)-S-triazine compounds against E. coli (11.00 mm) and S. aureus (9.00 mm).

TABLE-1 CHARACTERIZATION AND ANTIBACTERIAL DATA OF COMPOUNDS

Compound	m.f.	m.p. (°C)	N (%)	Zone size in mm	
				E. coli	S. aureus
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(phenyl ureido)-S-triazine	C ₂₄ H ₁₉ ON ₈ SCl	150	22.27	11.0	9.0
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(3'-nitro PU)-S-triazine	C ₂₄ H ₁₈ O ₃ N ₉ SCl	175	22.95	8.0	8.5
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(4'-nitro PU)-S-triazine	C ₂₄ H ₁₈ O ₃ N ₉ SCl	185	22.95	8.0	8.5
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(2'-methyl PU)-S-triazine	C ₂₅ H ₂₁ ON ₈ SCl	171	21.63	10.0	6.0
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(3'-methyl PU)-S-triazine	C ₂₅ H ₂₁ ON ₈ SCl	179	21.60	10.0	7.0
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(4'-methyl PU)-S-triazine	C ₂₅ H ₂₁ ON ₈ SCl	187	21.65	10.0	7.0
2-(6'-Chlorobenzothiazol-2'-yl- amino)-4-(3'-methyl anilino)-6- (2'-methoxy PU)-S-triazine	C ₂₅ H ₂₁ O ₂ N ₂ SCl	198	21.00	11.0	9.0
2-(6'-Chlorobenzothiazol-2'-yl- amino)-4-(3'-methyl anilino)-6- (4'-methoxy PU)-S-triazine	C ₂₅ H ₂₁ O ₂ N ₂ SCl	148	20.99	6.0	6.5
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(2'-chloro PU)-S-triazine	C ₂₄ H ₁₈ ON ₈ SCl ₂	165	20.83	7.0	7.0
2-(6'-Chlorobenzothiazol-2'-yl-amino)-4-(3'-methyl anilino)-6-(3'-chloro PU)-S-triazine	C ₂₄ H ₁₈ ON ₈ SCl ₂	137	20.85	8.0	8.5

Symbol: PU = phenyl ureido

It was found that methyl and methoxy substitution was effective as antibacterial agents. Both organisms show their effectiveness as therapeutic agents.

310 Desai et al. Asian J. Chem.

REFERENCES

 D.J. Mehta, C.V. Deliwala, M.H. Shah and V.K. Sheth, Arch. Intern. Pharmatodyn., 138, 480 (1962).

- 2. Medicinal Chemistry, 2nd Edn., Interscience New York, pp. 1012, 1030, 1037 (1960).
- 3. P.J. Cranfield, Ger. Pat. (1975); Chem. Abstr., 86, (1977).
- 4. D. Deieter, D. Max and S. Max, Ciba Ltd; Chem. Abstr., 70, 106177y (1969).
- 5. K.R. Desai and M.M. Pathak, J. Indian Chem. Soc; 61, 814 (1984).
- 6. E. Carpe and A. Toma, Chem Abstr., 63, 1484e (1965).
- 7. N. Hans Swiss, 592103, (1977); Chem. Abstr., 88, 22886n (1978).
- National Committee for Clinical Laboratory Standards, Approved Standards ASM-2, Villanova (1988).

(Received: 6 August 1999; Accepted: 21 October 1999) AJC-1897