Kinetics of Oxidation of Cysteine by Chloramine-B in HClO₄ Medium

T. DEMAPPA

Department of Studies and Research in Polymer Science, University of Mysore Sir. M. Visvesvaraya, Post-Graduate Centre, Tubinakere, Mandya-571 402, India

The kinetics of oxidation of cysteine by chloramine-B in HClO₄ medium has been carried out at 30°C. The reaction rate shows a first order dependence each on [CAB] and [cysteine] and inverse fractional order on [H⁺]. Addition of halide ions, ionic strength, dielectric constant of the medium and the reduction product benzenesulphonamide have no significant effect on the reaction rate. Thermodynamic parameters have been evaluated.

INTRODUCTION

There are the sources of halogen cations and hypohalite species¹⁻³. The kinetic investigations of oxidation of amino acids by several oxidants has been reported⁴⁻¹⁵ except with chloramine-B CAB. The author reports here the detailed investigation on oxidation of cysteine by CAB in HClO₄ medium at 30°C.

EXPERIMENTAL

Chloramine-B (CAB) was prepared by reported procedure 16 . The rate constants calculated were reproducible within $\pm 3\%$. Regression analysis was carried out on an EC-72 statistical calculator.

Stoichiometry and Product Analysis

Reaction mixtures containing different compositions were equilibrated at 30°C for 24 h. The iodometric determination of unreacted CAB in the reaction mixture showed that 4 moles of CAB were consumed per mole of cysteine according to equation (1).

HOOC—C—
$$CH_2SH + 4PhSO_2NClNa + 5H_2O \longrightarrow NH_2$$

$$CH_3CHO + 4PhSO_2NH_2 + H_2SO_4 + NH_3 + CO_2 + 4NaCl (1)$$

The presence of aldehyde which is an oxidation product of cysteine in the reaction mixture was detected by preparing 2,4-dinitrophenyl hydrazone derivatives and by using Tollens' and chromic acid tests¹⁷. The other product ammonia

892 Demappa Asian J. Chem.

was quantitatively estimated by standard micro-Kjeldahl procedure, CO_2 was detected by the conventional lime water test. The reduction product of CAB, $PhSO_2NH_2$ was also identified by TLC using petroleum ether-chloroform-1-butanol (2:2:1 v/v/v) solvent system with ascending irrigation and using iodine as the developing reagent $(R_f = 0.88)$. ¹⁸

RESULTS AND DISCUSSION

The plot of log [CAB] versus time was found to the linear (Table-1) indicating first order dependence on [CAB]. The rate of reaction increased with increase in [Cyst] and plot of log k^1 vs. log [Cyst] was linear with a slope equal to unity (Fig. 1, Table-1), indicating first order dependence of rate on [Cyst]. The rate of

TABLE-1
EFFECT OF VARYING REACTANT CONCENTRATION ON THE RATE OF REACTION

 $HCIO_{1} = 0.04 \text{ mol dm}^{-3} \text{ H} = 0.2 \text{ mol dm}^{-3} \text{ T} = 202 \text{ K}$

$HCIO_4 = 0.04 \text{ mol dm}^3, \mu = 0.2 \text{ mol dm}^3, T = 303 \text{ K}$					
10 ³ [CAB] (mol dm ⁻³)	10 ³ [Cyst] (mol dm ⁻³)	k^1 $(10^4 sec^{-1})$			
2.0	3.0	13.63			
3.0	3.0	13.64			
4.0	3.0	13.63			
5.0	3.0	13.63			
6.0	3.0	13.62			
7.0	3.0	13.64			
5.0	1.0	4.54			
5.0	2.0	9.08			
5.0	3.0	13.63			
5.0	4.0	18.17			
5.0	5.0	22.65			
5.0	6.0	27.23			

r = 0.9999; order = 1.00

reaction decreased with increase in [H⁺] and plot of log k¹ vs. log [H⁺] was found to be linear (Table-2, Fig. 2) with fractional slope, indicating inverse fractional order. Addition of ClO₄, chlorine ion, reaction product benzenesulphonamide, ionic strength of the medium have no effect on the reaction. The reaction was studied at various temperatures and thermodynamic parameters were evaluated (Table-3). Pryde and Soper¹⁹, Morries et al.²⁰, Bishop and Jennings²¹ have shown the existence of similar equilibria in acid and alkaline solutions of CAB. Chloramine-B behaves as a strong electrolyte in aqueous solutions as shown in equations (2–6)

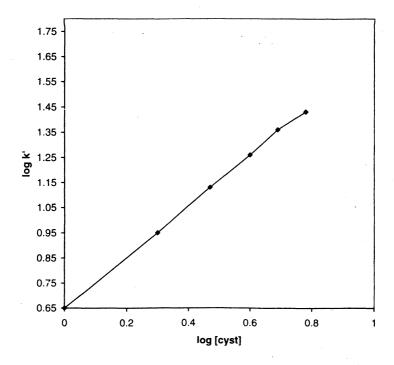


Fig. 1 TABLE-2 EFFECT OF [H $^{+}$] ON THE RATE OF REACTION AT [NaClO4]

 $[Cyst] = 3.0 \times 10^3 \text{ mol dm}^{-3}, \mu = 0.2 \text{ mol dm}^{-3}, T = 303 \text{ K}$

[H ⁺] (mol dm ⁻³)	k^{1} $(10^{4} sec^{-1})$
0.01	22.56
0.02	17.50
0.03	15.12
0.04	13.63
0.06	11.77
0.10	9.75
0.14	8.63
0.18	7.87

r = 0.9999; order = -0.36

894 Demappa Asian J. Chem.

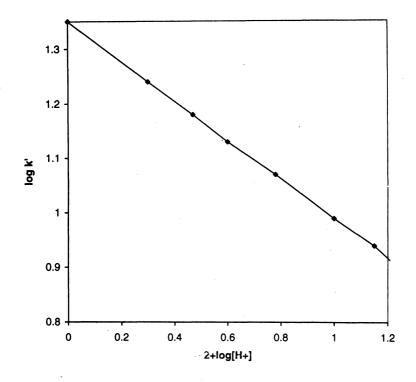


Fig. 2

$$PhSO_2NCINa \rightleftharpoons PhSO_2NCI^- + Na^+$$
 (2)

$$PhSO_2NCl^- + H^+ \rightleftharpoons PhSO_2NHCl$$
 (3)

$$PhSO_2NHCl + H_2O \rightleftharpoons PhSO_2NH_2 + HOCl$$
 (4)

$$2PhSO_2NHCl \rightleftharpoons PhSO_2NH_2 + PhSO_2NCl_2$$
 (5)

$$HOCl + H^{\dagger} \rightleftharpoons H_2OCl^{\dagger}$$
 (6)

In acid medium, the probable oxidizing species are the free acid (PhSO₂NHCl), dichloramine-B (PhSO₂NCl₂), HOCl and H₂OCl⁺. The involve-

TABLE-3
THERMODYNAMIC PARAMETERS FOR OXIDATION OF
CYSTEINE BY CHLORAMINE-B

Temperature K	k^1 (10^4 sec^{-1})	ΔH [≠] (kJ mol ⁻¹)₋	ΔS^{\neq} (kJ mol ⁻¹)	ΔG [≠] (kJ mol ⁻¹)	$E_a $ (kJ mol $^{-1}$)
298	8.49	45.33	-150.57	91.35	47.89
303	13.63				
308	18.90				
313	26.50				

ment of PhSO₂NCl₂ in the mechanism leads to a second order rate law according to equation (5) which is contrary to experimental observations. If HOCl were the primary oxidizing species, a first order retardation of the rate by the added PhSO₂NH₂ would be expected contrary to experimental result. Hardy and Johnston¹⁹ have studied the pH dependent relative concentration of the species present in acidified haloamines. PhSO₂NCl is the likely oxidizing species in acid medium. Narayanan *et al.*²² and Subramanian²³ have reported that monohaloamine can be further protonated at pH < 2 as shown in the following equations (7) and (8) for CAT and CAB respectively.

$$CH_3C_6H_4SO_2NHCI + H^+ \rightleftharpoons CH_3C_6H_4SO_2N^+H_2CI$$
 (7)

$$C_6H_5SO_2NHCl + H^{\dagger} \rightleftharpoons C_6H_5SO_2N^{\dagger}H_2Cl$$
 (8)

In the present case the inverse fractional order in (H⁺) suggests that the deprotonation of PhSO₂NH₂Cl⁺ results in the regeneration of PhSO₂NHCl which is likely to be the active oxidizing species involved in the mechanism of the cysteine oxidation. Based on the preceding discussion a mechanism (Scheme-I) is proposed for the reaction.

SCHEME-I

$$PhSO_{2}NH_{2}Cl \stackrel{K_{1}}{\rightleftharpoons} PhSO_{2}NHCl + H^{+} \qquad (i) Fast$$

$$PhSO_{2}NHCl + S \stackrel{k_{2}}{\longrightarrow} X \qquad (ii) Slow$$

$$X \stackrel{k_{3}}{\longrightarrow} Products$$

In Scheme-I, S represents the cysteine substrate, while X represents the complex intermediate species. A detailed mechanistic interpretation of cysteine-CAB reaction in acid medium is represented in Scheme-II.

From Scheme-I,
$$Rate = \frac{k_2 K_1 [CAB][S]}{[H^+] + K_1}$$
 (9)

which is in agreement with experimental data including a first order in [CAB] and [Cysteine] and inverse fractional order in $[H^+]$. Since rate = k^1 [CAB] under pseudo first order condition, the rate equation can be transformed into equation (10).

$$\frac{1}{k^1} = \frac{[H^+]}{k_2 K_1[S]} + \frac{1}{k_2[S]}$$
 (10)

Based on equation (10) the plot of $1/k^1 \ vs.$ [H⁺] at constant [CAB], [Substrate] and temparature was found to be linear. The value of K_1 and k_2 were calculated from the slope and intercept of the plot $(k_2 = 46.229 \times 10^{-2} \text{ and } K_1 = 5.041 \times 10^{-2})$. The value of deprotonation constant $(K_1 = 5.041 \times 10^{-2})$ of step (i) of Scheme-I is calculated from equation (10). Therefore the value of protonation constant (K_p) is obtained by $K_p = 1/K_1$. Further the value of K_p 19.837 is equal to that of values obtained in oxidation of primary amines by bromamine-T in HCl medium and in presence of Ru(III) catalyst. ²⁴ Therefore the constancy of

(i)
$$R \stackrel{\bullet}{\longrightarrow} H + PhSO_2NCIH \xrightarrow{Slow} R \stackrel{\bullet}{\longrightarrow} H + PhSO_2\overline{N}H$$

(ii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(iii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(iv) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(v) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(vi) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(vii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

(viii) $R \stackrel{\bullet}{\longrightarrow} H + CIHNPhSO_2 \xrightarrow{H^+} R \stackrel{\bullet}{\longrightarrow} H \stackrel{H^+}{\longrightarrow} R \stackrel{\bullet}{\longrightarrow} H$

$$(x) \quad CH_3 - C - N \\ H \qquad \qquad CH_3CHO + NH_3$$

Here
$$R = HOOC-CH-CH_2$$

 $| NH_2$

 K_p or K_1 values forms a strong indirect evidence for the existence of the reacting species $PhSO_2NH_2Cl$ of oxidant. Supporting the proposed mechanism of oxidation of cysteine by CAB (Scheme-II).

REFERENCES

- 1. F.E. Hardy and J.P. Johnston, J. Chem. Soc., Perkin Trans., 2, 742 (1973).
- 2. M.M. Campbell and G. Johnston, Chem. Rev., 78, 65 (1978).
- 3. B.T. Gowda and D.S. Mahadevappa, J. Chem. Soc., Perkin Trans., 2, 323 (1983).
- 4. W.H. McGregor and F.H. Carpenter, Biochem., 1, 53 (1962).
- 5. R.J. Wiliams and M.A. Wodds, J. Am. Chem. Soc., 59, 1408 (1929).
- 6. B.H. Nicolot and L.A. Shinn, J. Am. Chem. Soc., 59, 1615 (1929).
- 7. M.K. Reddy, S. Reddy and E.V. Sundram, Indian J. Chem., 23A, 197 (1984).
- 8. M.S. Ramachandran and T.S. Vivekanandan, J. Chem. Soc., Perkin Trans., 2, 1341 (1984).
- 9. B.T. Gowda and R.V. Rao, Indian J. Chem., 25A, 908 (1986).
- D.S. Mahadevappa, K.S. Rangappa, N.M.M. Gowda and B.T. Gowda, Int. J. Chem., Kinet., 14, 1183 (1982).
- 11. V.C. Verma and B.S. Yadav, J. Indian Chem. Soc., 61, 58 (1984).
- 12. B.T. Gowda and D.S. Mahadevappa, J. Chem, Soc., Perkin Trans., 2, 323 (1983).
- 13. K.C. Gupta and K.K. Gupta, Int. J. Chem. Kinet., 17, 769 (1985).
- 14. D.S. Mahadevappa, S. Ananda and N.M.M. Gowda, J. Chem. Soc., Perkin Trans., 2 (1985).
- D.S. Mahadevappa, S. Ananda, A.S.A. Murthy and K.S. Rangappa, *Indian J. Chem.*, 23A 17 (1984).
- 16. C.G.R. Nair and P. Indrasena, Talanta, 23, 239 (1976).
- 17. F. Feigl, Spot Tests in Organic Analysis, Elsevier, Amsterdam (1975).
- S. Ananda, B.M. Venkatesha, D.S. Mahadevappa and N.M.M. Gowda, *Int. J. Chem. Kinet.*, 25, 755 (1993).
- 19. B.G. Pryde and F.G. Soper, J. Chem. Soc., 1582 (1926).
- 20. J.C. Morris, Slazar and M.A. Wineman, J. Am. Chem. Soc., 70, 2036 (1948).
- 21. E. Bishop and Jennings, *Talanta*, 1, 197 (1958).
- 22. S.S. Narayanan and V.R.S. Rao, Radio Chem. Acta, 32, 211 (1983).
- 23. M. Subhashini, M. Subramanian and V.R.S. Rao, Talanta, 32, 1982 (1985).
- S. Ananda, M.B. Jagadeesha, Puttaswamy and N.M.M. Gowda, Synth. React. Inorg. Mei-Org. Chem., 8, 1093 (1997).