NOTE

A Novel Synthesis of Some Isomeric Isoxazoles

S.S. THAKARE* and A.G. DOSHI†

Department of Chemistry, Mahatma Fule Mahavidyalaya

Warud-444 906. India

β-(2'-Furyl)-acrylophenone dibromide (Ia-c) react with hydroxylamine hydrochloride in pyridine to give 3-(2"-hydroxy-3"-substituted-5"-chlorophenyl)-5-(2'-furyl)-isoxazoles (IIa-c) while in methanol the corresponding 3-(2'-furyl)-5-(2"-hydroxy-3"-substituted-5"-chlorophenyl) isoxazoles (IIIa-c) are obtained contrary to the isomerization of isoxazoles (IIa-c) in pyridine.

Isoxazoles are of vital importance as drugs. Okuda et al. discovered their antibacterial properties. The antitubercular² and antifungal³ activities of isoxazoles are also well known. Mittal and Singhal⁴ synthesised antimicrobial isoxazoles from different substituted benzenediazonium chlorides. Basinski and Jerzmanowska⁵ reported the formation of two isomeric isoxazoles from ω-formyl-o-hydroxyacetophenone and hydroxylamine. Thakar et al.6 synthesised 3-(2'-furyl)-5-(2-hydroxyphenyl)-isoxazole from 1,3-propanediones by the action of hydroxylamine hydrochloride in methanol. Borkhade and Marathey⁷ however have reported the formation of other isoxazoles by the reaction between o-hydroxydibenzoyl methane and hydroxylamine hydrochloride in pyridine. Recently Nair and Wadodkar8 have reported the synthesis of isomeric isoxazoles from 1-(2'-furyl)-3-(2"-hydroxyphenyl)-1,3-propanedione in pyridine and methanol respectively. Isoxazoles also have been synthesised from chalconedibromides 9-13. Literature survey reveals that isoxazoles and their isomers have not been prepared from 2-hydroxy-3-substituted-5-chloro-β-(2'-furyl)acrylophenonedibromides (Ia-c). This prompted us to synthesise some isomeric isoxazoles from β -(2'-furyl)-acrylophenonedibromides.

The melting points were determined in an open capillary tube and are uncorrected. The IR spectra were scanned on Perkin-Elmer spectrophotometer using KBr pellets. The 1H NMR spectra were recorded on "Varian CFT-20" in CDCl₃ using TMS as reference (chemical shifts in δ , ppm downfield from TMS). Purity of the compounds synthesised was tested by TLC on silica gel-G coated microscopic slides.

^{*}Address for Correspondence: S.S. Thakare, 320, 2nd Floor, Vijaygad Apartment, In front of Gayatri Nursery, Mangilal Plot, Camp, Amravati-444 602 (M.S.), India.

[†]Department of Chemistry, Vidya Bharati Mahavidyalaya, Camp, Amravati-444 602, India.

β-(2'-Furyl)-acrylophenone dibromides (Ia-c) were prepared by literature method¹⁴.

Synthesis of 3-(2"-hydroxy-5"-chlorophenyl)-5-(2'-furyl)-isoxazole (IIa)

Mixture of 2-hydroxy-5-chloro β -(2'-furyl)-acrylophenonedibromide (Ia) (0.01 mol) and hydroxylamine hydrochloride (0.012 mol) in pyridine (20 mL) was refluxed for 3 h. Contents were cooled, diluted with water and acidified with 1:1 HCl. The crude product thus obtained was crystallised from ethanol to get (IIa) (Scheme-1) in 78% yield, m.p. 147° C. % Analysis: Found C = 59.31; H = 2.76, N = 5.04%; $C_{13}H_8O_3NC1$ requires C = 59.65; H = 3.05; N = 5.35%.

IR (KBr): 3160–3130 cm⁻¹ ν (—OH), 1610 cm⁻¹ ν (C=C), 1575 cm⁻¹ v(>C=N-), 965-950 cm⁻¹ v(>C=N-0), 890, 830 cm⁻¹ v(2'-furyl), 740 $cm^{-1} \nu(C-Cl)$.

PMR (CDCl₃): 6.3–7.8 δ (m, 7H, Ar—H and heteroaromatic H), 12.1 δ (s, 1H, --OH).

Synthesis of 3-(2'-furyl)-5-(2"-hydroxy-5"-chlorophenyl)-isoxazole (IIIa)

Mixture of 2-hydroxy-5-chloro-β-(2'-furyl)-acrylophenone dibromide (Ia) (0.01 mol) and hydroxylamine hydrochloride (0.012 mol) in methanol (20 mL) refluxed for 5 h and cooled to obtain the product which was crystallized from ethanol to get the compound (IIIa) (Scheme-1) in 70% yield, m.p. 159°C. % Analysis: Found C = 59.20; H = 2.82; N = 4.97; $C_{13}H_8O_3NCl$ requires C = 59.65; H = 3.05; N = 5.35%).

IR (KBr): $3180 \text{ cm}^{-1} \text{ v(} -OH), 1635 \text{ cm}^{-1} \text{ v(} C-O), 1605, 1575 \text{ cm}^{-1}$ v(>C=N-), 880-850 cm⁻¹ v(2'-furyl), 735 cm⁻¹ v(C-Cl).

PMR (CDCl₃): $6.5-8.0 \delta$ (m, 7H, Ar—H and heteroaromatic H), 11.8δ (s, 1H, OH).

Other members of the series were synthesised in a similar manner and their characterisation data are given in Table-1.

TABLE-1 CHARACTERISATION DATA ISOXAZOLES (IIa-c) AND ISOMERIC ISOXAZOLES (IIIa-c)

Compd	R	m.p. (°C)	Yield (%)	m.f.	% Found (Calcd.)		
					С	H ·	N
IIb	NO ₂	176	78	C ₁₃ H ₇ O ₅ N ₂ Cl	50.42 (50.89)	2.11 (2.28)	8.72 (9.13)
IIc	Br	136	75	C ₁₃ H ₇ O ₃ NClBr	45.52 (45.81)	1.66 (2.05)	3.80 (4.11)
IIIb	NO ₂	172	82	$C_{13}H_7O_5N_2CI$	50.50 (50.89)	1.98 (2.28)	8.68 (9.13)
IIIc	Br	164	70	C ₁₃ H ₇ O ₃ NClBr	45.37 (45.81)	1.85 (2.05)	3.67 (4.11)

The chemical properties and molecular formula of compound (IIIa) indicate that it is similar to compound (IIa). However, the m.p. of (IIa) is 147°C and that

782 Thakare et al. Asian J. Chem.

of (IIIa) is 159°C. The mixed melting point shows considerable depression. These facts clearly indicate that the compound (IIIa) is isomeric with compound (IIa). Compound (IIa) might have been formed via 1,2-addition in pyridine while (IIIa) by 1,4-addition in methanol.

where (a) R = H, (b) $R = NO_2$ and (c) R = Br.

ACKNOWLEDGEMENTS

One of the authors (S.S. Thakare) is thankful to Dr. Smita Thakare, Saket Thakare and M.G. Dhonde for their keen interest in the work.

REFERENCES

- 1. T. Okuda, J. Kitamura and K.A. Azika, Proc. Gifu Coll. Pharm., 5, 2083 (1955).
- 2. C. Caradonn and M.L. Stein, Pharmaco. Edn. Soc., 15, 674 (1960).
- 3. K.S.R. Krishnamohanrao and N.V. Subbaro, *Indian J. Chem.*, 6, 66 (1968).
- 4. A.K. Mittal and O.P. Singhal, J. Indian Chem. Soc., 58, 1089 (1981).
- W. Basinski and Z. Jerzmanowska, Polish J. Chem., 53, 229 (1979); Chem. Abstr., 91, 51440j (1979).
- 6. K.A. Thakar and P.R. Muley, Indian J. Chem., 14B, 224 (1976).
- 7. K.T. Borkhade and M.G. Marathey, *Indian J. Chem.*, **8**, 796 (1970).
- 8. S.B. Nair and K.N. Wadodkar, Indian J. Chem., 21(B), 553 (1982).
- 9. R.P. Barnes and A. Brandon, J. Am. Chem. Soc., 65, 1070 (1943).
- 10. C. Weygand and E. Bauer, Ann., 459, 127 (1927).
- 11. R.B. Shenoi, R.C. Shah and T.S. Wheeler, J. Chem. Soc., 571 (1940).
- 12. F.J. Pond and R.G. Shaffstall, J. Am. Chem. Soc., 22, 638 (1900).
- 13. R.P. Barnes and L.B. Dodson, J. Am. Chem. Soc., 67, 132 (1945).
- 14. T.C. Sharma, Vinita Saksena and N.J. Reddy, Acta Chim., 93, 415 (1977).

(Received: 15 November 2000; Accepted: 17 February 2001) AJC-2263