NOTE

Synthesis of Bis-Isoxazoles

J.M. GAJBHIYE* and V.S. JAMODE

Department of Chemistry, Amravati University, Amravati-444 604, India

Bis-isoxazoles (III) have been synthesised by the reaction of bis-chalcone dibromides (II) with hydroxylamine hydrochloride in pyridine medium. Structures of these compounds have been established by chemical properties, elemental analysis and spectral analysis (viz., IR and NMR).

Bis-isoxazoles are used in the synthesis of insecticides¹ and acaracides¹. They are also being used in the synthesis of pharmaceuticals² and herbicides³. Bis-isoxazoles act as lipooxygenase inhibitors⁴, anti-inflammatory agents⁵, analgesics⁵ and antipyretics⁵. Bis-isoxazoles are widely used as potential antifeedants⁶ and whitening agents⁷. They are also used as oral anti-diabetics⁸. Literature survey shows that the synthesis of bis-isoxazoles from bis-chalcone dibromides has not so far been reported. It was therefore thought of interest to synthesise bis-isoxazoles.

SCHEME-I

The present work deals with the synthesis of 1,1-bis-{2-hydroxy-3-[5'-arylisoxazol-3-yl]-5-methyl phenyl} methane (IIIa-h) from 1,1-bis-{2-hydroxy-3-[2,3-dibromo-3-phenyl propan-1-one]-5-methyl phenyl} methane(IIa-h) using pyridine as a medium.

Melting points are uncorrected. IR spectra were recorded on Perkin-Elmer 577 (4000–500 cm⁻¹). NMR spectra were recorded on Brucker AC300 NMR spectrometer at 300 MHz in DMSO. Purity of compounds was checked by TLC.

Preparation of 1,1-Bis-{2-hydroxy-3-[5'-aryl-isoxazol-3-yl]-5-methyl phenyl} methane(III a-h)

1,1-Bis-{2 - hydroxy - 3 - [2,3 - dibromo - 3 - phenyl propan-1-one] - 5 - methyl phenyl} methane(IIa-h) (0.01 M) was refluxed with hydroxylamine hydrochloride (0.04 M) in pyridine medium (20 mL) for about 5 h. Reaction mixture was cooled, diluted with water and acidified with dilute HCl. The solid product obtained was filtered and crystallised from ethanol and acetic acid (Scheme-I).

TABLE-1
PHYSICAL CHARACTERIZATION DATA OF BIS-CHALCONES (I a-h)

Compound	R_1	R ₂	Yield (%)	m.p. (°C)	m.f.
Ia	Н	Н	90	215	C ₃₃ H ₂₈ O ₄
Ib	Н	OCH ₃	90	196	$C_{35}H_{32}O_6$
Ic	OCH ₃	ОН	95	156	$C_{35}H_{32}O_8$
Id	Н	NO ₂	90	> 270	$C_{33}H_{26}N_2O_8$
Ie	OCH ₃	Н	90	222	$C_{35}H_{32}O_6$
If*	Н	ОН	85	139	$C_{33}H_{28}O_6$
Ig*	Н	$N(CH_3)_2$	80	128	$C_{37}H_{38}N_2O_4$
Ih*	OCH ₃	OCH ₃	80	168	C ₃₇ H ₃₆ O ₈

Melting Points of a to e were tallied with authentic samples⁹.

TABLE-2
PHYSICAL CHARACTERIZATION DATA OF BIS-CḤALCONE DIBROMIDES (II a-h)

Compound	R_1	R ₂	Yield (%)	m.p. (°C)	m.f.
IIa	Н	Н	90	197	C ₃₃ H ₂₈ O ₄ Br ₄
IIb	Н	OCH ₃	90	232	$C_{35}H_{32}O_6Br_4$
IIc	OCH ₃	ОН	95	180	$C_{35}H_{32}O_8Br_4$
IId	Н	NO ₂	90	>270	$C_{33}H_{26}N_2O_8Br_4$
IIe	OCH ₃	Н	90	236	$C_{35}H_{32}O_6Br_4$
IIf*	Н	ОН	85	194	$C_{33}H_{28}O_6Br_4$
IIg*	Н	$N(CH_3)_2$	80	166	$C_{37}H_{38}N_2O_4Br_4$
IIh*	OCH ₃	OCH ₃	85	220	C ₃₇ H ₃₆ O ₈ Br ₄

Melting Points of a to e were tallied with authentic samples⁹.

^{*}New bis-chalcones.

^{*}New bis-chalcone dibromides.

Yield N% Found m.p. Compound R₁ R_2 m.f. (%) (°C) (Calcd.) IIIa Н 60 268 C33H28N2O4 5.39 (5.42) Η IIIb Н OCH₃ 75 242 C₃₅H₃₂N₂O₆ 4.72 (4.86) IIIc 270 C35H32N2O8 OCH₃ OH 80 4.53 (4.60) IIId 85 > 270 $C_{33}H_{26}N_4O_8$ 9.19 (9.24) NO₂ C₃₅H₃₂N₂O₆ IIIe OCH₃ Η 70 249 4.72 (4.86) IIIf Η OH 70 257 C33H28N2O6 4.98 (5.10) IIIg Н $N(CH_3)_2$ 60 251 C₃₇H₃₈N₄O₄ 8.87 (9.30) IIIh OCH₃ OCH₃ 75 253 C37H36N2O8 4.31 (4.40)

TABLE-3 PHYSICAL CHARACTERIZATION DATA OF BIS-ISOXAZOLES (III a-h)

Spectral interpretation v of IIIa-h

IR (v_{max}) : 3396 cm⁻¹ v(—OH); 1610 cm⁻¹ v(C—N); 1250 cm⁻¹ v(C—O); $1800-1500 \text{ cm}^{-1} \text{ v(C=C)}$; $1467 \text{ cm}^{-1} \text{ v(Ar-H)}$.

NMR: δ 2.2 (S, 6H, 2-CH₃); δ 2.6 (S, 6H, 2-OCH₃); δ 3.4 (S, 2H, -CH₂) δ 5.4 (S, 4H, 4-OH); δ 3.9 (S, 2H, 2-CH); δ 6.7–7.7 (m, 10H, Ar—H).

REFERENCES

- Yasushi Shibata, Koichiro Aoyagi, Naomi Ichikawa, Hidemitsu Takahashi, Takao Iwasa, Masahiro Kawaguchi and Takehiko Nakamura, Chem. Abstr., 130, 95554y (1999).
- Michinori Takebayashi, Masami Hatano, Hiroyuku Adachi and Takashi Okake, Chem. Abstr., 130, 52425q (1999).
- 3. Kouichi Araki, Takako Brett, Atsushi Go, Masahito Ito, John Morris, Hideshi Mukaida, Yukiko Oe, Norio Sasaki and Neil Johathan Geach, Chem. Abstr., 130, 153653t (1999).
- 4. Takashi Shindo, Naosuke Matsuura, Naohiko Ono, Yushiro Akizawa, Kenji Nozaki and Masahiro Suzuku Chem. Abstr., 118, 254919 (1993).
- 5. Yuichi Hagiwara, Motoaki Taraka, Akira Kajitani and Sanji Yasumoto, Chem. Abstr., 116, 128944s (1992).
- S. Purushottam Reddy, D. Ashok and P.N. Sarma, J. Indian Chem Soc., 68, 242 (1991).
- 7. Bangzao Zhou, Zhuanli Faming, Gongkai Shenqug and C.N. Shuomingshu, Chem. Abstr., 110, 8199g (1989).
- 8. Helmut Egg, Ulla Gnauer and Brigitte Hambrusch, Chem. Abstr., 108, 94176k (1988).
- 9. R.V. Kinhikar and V.S. Jamode, Asian J. Chem, 13, 245 (2001).

(Received: 9 September 2000; Accepted: 16 November 2000) AJC-2187