NOTE

Spectrophotometric Determination of Ascorbic Acid in Pharmaceutical Preparations

AKELLA SIVARAMAKRISHNA

Department of Engineering Chemistry
A.U. College of Engineering., Visakhapatnam-530 003, India

Conditions were developed for the determination of ascorbic acid using tris(4,7-dihydroxy-1,10-phenanthroline) iron(III) as reagent. The method was applied to the determination of ascorbic acid in pure form and in pharmaceutical preparations. The method is sensitive (0.20 to 3.6 μ g/mL of ascorbic acid) and rapid, and tolerates the presence of common ingredients.

Vitamin C is an important constituent in many pharmaceutical preparations. A number of methods have been proposed for the assay of ascorbic acid, based on its reducing property. Most of the reported indirect methods are based upon the reduction of iron(III)¹⁻³ or periodate^{4, 5} or copper(II)^{6, 7} by ascorbic acid to the corresponding reduced forms. The latter react with appropriate chromogenic reagents producing coloured species which are determined spectrophotometrically. The present paper describes a direct, simple, rapid and sensitive method for the determination of ascorbic acid using tris(4,7-dihydroxy-1,10-phenanthroline) iron(III) [(DHP)₃-iron(III)] as reagent. This method is successfully applied to the determination of ascorbic acid in pure form and in pharmaceutical preparations.

A Perkin-Elmer Lambda 15 UV/VIS Spectrophtometer was used for the absorbance measurements with matched cells of 1 cm path length. A digital pH meter (Dalal, India) was used to measure the pH values.

0.1 g of pure ascorbic acid was dissolved in 1000 mL of distilled water to obtain 100 µg/mL of solution. A working solution was prepared by appropriate dilution. 0.016% (DHP)₃-iron(III) solution was prepared as reported⁸. 0.1 M hydrochloric acid solution was prepared. Solutions of pharmaceutical preparations were prepared⁴ and subsequently diluted to the working range.

Recommended procedure: Aliquots containing 5 to 90 µg of ascorbic acid were mixed with the 2 mL of (DHP)₃-iron(III) reagent. The pH of the solution was adjusted to 1 to 4 in over all 25 mL by adding requisite amount of dilute hydrochloric acid solution (0.1 M). A red coloured product having a λ_{max} at 525 nm was formed. The absorbance read against reagent as blank was found to be linear to the concentration of ascorbic acid.

The colour reaction between ascorbic acid and (DHP)₃-iron(III) was studied in solutions of different pH. According to the experimental results, the colour of

356 Sivaramakrishna Asian J. Chem.

the formed product was stable upto 10 min in 1 to 4 pH medium. Attempts to use acetate-acetic acid buffer were not favourable. The red colour is probably due to the reduction of $(DHP)_3$ -iron(III) complex by ascorbic acid to $(DHP)_3$ -iron(II) complex. The results for the determination of ascorbic acid in pure form and in pharmaceutical preparations are shown in Table-1. The calculated molar absorptivity is found to be 2.4×10^4 l mol⁻¹ cm⁻¹ at 525 nm.

TABLE-1
DETERMINATION OF ASCORBIC ACID IN PHARMACEUTICAL PREPARATIONS

Ascorbic acid	Recovery		
	Standrad method	Proposed method	Coefficient of variation*
Pure form	99.68	99.72	(0.36)
Tablets			
Sample 1	99.84	99.88	(0.45)
Sample 2	98.44	98.94	(0.30)
Sample 3	101.05	101.16	(0.89)
Sample	100.25	100.04	(0.59)
Syrup			
Sample	100.6	99.42	(1.05)

^{*}Values are obtained from five determinations for each product.

The usually associated ingredients such as chloride, bromide, tartarate, oxalate, citrate, thiamine, pyridoxine and cyanocobalamine do not interfere even in 1000-fold excess. 100-fold excess of reducing agents such as hydroxylamine, semicarbazide, hydrazine and glucose do not interfere with the determination. However, sulphide, sulphite, thiosulphate, iodide, iron(II), and ferrocyanide interfere seriously

ACKNOWLEDGEMENT

This work is part of a research project, funded by UGC, New Delhi (India). The author is highly thankful to Prof. Dr. U. Muralikrishna for his guidance.

REFERENCES

- 1. Liangshe Fu and Ying Ren, Fenxi Huaxue, 20, 1193 (1992).
- 2. Guozhen Fang and Usen Chen, Shipin yu Fijiao Bibgya, 4, 54 (1992).
- 3. P. Arya Satya and Meenakshi Mahajan, Anal. Sci., 11, 853 (1995).
- 4. N. Balasubramanian, S. Usha and K. Srividya, Indian Drugs, 32, 78 (1995).
- 5. K. Srividya and N. Balasubramanian, Analyst, 121, 1653 (1996).
- 6. Esma Tutem, Bahri Ulkuseven and Resat Apak, Anal. Lett., 25, 472 (1992).
- 7. Masaaki Tabata and Hirofumi Morita, Talanta, 44, 151 (1997).
- 8. P. Poe Donald, Harvey Diehl, *Talanta*, 21, 1065 (1974).