NOTE

Synthesis of 2,4-Diaryl-2,3-Dihydro-1,5-Benzothiazepines as Antibacterial and Antifungal Agents

V.M. BAROT*, M.R. PATEL† and H.B. NAIK†
Department of Chemistry, Smt. S.M.P. Science College, Talod-383 215, India

o-Aminophenol reacts with chalcones (I) in methanol and acetic acid to give 3-(2-aminophenylmercapto)-3-amyl-propiophenones (II) which immediately undergo cyclisation *in situ* to give 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines (IIIa).

Benzothiazepine derivatives are known to possess antiserotonic¹, neuroleptic², psychotropic³, antianginal and antidepressant⁴ activities. 2,3-Dihydro-1,5-benzothiazepin-4-(4H)-ones are found to be psychosedative^{5, 6}. Although some benzothiazepines are reported as coronary vasodilatory⁸.

Preparation of 4(3'-chloro-2'-hydroxy-5'-methylphen-1'-yl)-2-sub-phenyl-2,3-dihydro-1,5-benzothiazepine

A solution of 3'-chloro-2'-hydroxy-5'-methyl chalcone (0.01 mol) and o-aminothiophenol (I, 0.011 mol) in anhydrous methanol (100 mL) and glacial acetic acid (10 mL) was refluxed for 2 h, and cooled. The separated product was filtered and crystallized from ethanol to give (II a-o).

[†]South Gujarat University, Surat, India.

348 Barot et al. Asian J. Chem.

IR Spectra: 1610 v(C=N), 780 v(C-Cl stret.), $870 \text{ (thiazepine ring) cm}^{-1}$. NMR Spectra: (δ, ppm) , $2.31 \text{ (CH}_2 \text{ of thiazepine)}$, 4.33 (CH of thiazepine), 6.76 (OH), 7.63-8.50 (Ar-H).

All the melting points were determined in open capillaries and are uncorrected. IR spectra of the compounds were recorded on a Perkin-Elmer 577 spectrophotometer and PMR spectra (CDCl₃: TMS as internal standard) on a Varian spectrophotometer Model No. XL-300).

Antibacterial activity: The antibacterial activity of title compounds is evaluated against *Staphylococcus aureus* and *Escherichia coli* by paper disc method and compared with standard drugs like amoxycillin and cloxacilin. Compounds Nos. **b**, **c**, **h**, **m** have shown maximum activity against *S. aureus* and *E. coli*.

Compounds **f**, **j** are inactive against *S*. aureus and *E*. coli while rest of the compounds have shown medium activity against both the bacteria.

Antifungal activity: The antifungal activity of the title compounds was evaluated against *C. albicans* by paper disc technique and compared with the standard drug nystatin.

Compounds Nos. **d**, **f**, **i** and **j** are inactive, while rest of the compounds have shown poor activity against fungi.

Antifungicidal

TABLE-1: PHYSICAL DATA OF COMPOUNDS II (a-g)

m.p. °C Antibacterial

No. R m.f. (Yield activity (24 h)

No.	R	m.f.	(Yield	activity (24 h)		activity (48 h)
			· %)	S. aureus	E. coli	C. albicans
a	Phenyl	C ₂₂ H ₁₈ ONCIS	130 (63)	11	15	16
b	2-furfuryl	C ₂₀ H ₁₆ ONCIS	109 (60)	17	15	14
c	2-chlorophenyl	C ₂₂ H ₁₇ ONCl ₂ S	171 (65)	16	17	13
d	4-chlorophenyl	C ₂₂ H ₁₇ ONCl ₂ S	136 (62)	12	NA	NA
e	4-N,N-dimethyl aminophenyl	C ₂₄ H ₂₃ ON ₂ CIS	153 (67)	17	14	12
f	3,4-methylene dioxyphenyl	C ₂₃ H ₁₈ O ₃ NCIS	139 (60)	NA	NA	NA
g	2-nitrophenyl	$C_{22}H_{17}O_3N_2CIS$	165 (71)	15	13	13
h	3-nitrophenyl	$C_{22}H_{17}O_3N_2CIS$	154 (68)	17	12	11
i	4-nitrophenyl	$C_{22}H_{17}O_3N_2CIS$	142 (70)	15	14	NA
j	4-hydroxyphenyl	$C_{22}H_{18}O_2NCIS$	148 (62)	NA	NA	NA
k	3-aminophenyl	$C_{22}H_{19}ON_2CIS$	168 (65)	NA	13	11
l	4-methoxyphenyl	$C_{23}H_{20}O_2NCIS$	116 (68)	15	15	14
m	4-methylphenyl	C ₂₃ H ₂₀ ONCIS	171 (72)	11	16	13
n	2-hydroxyphenyl	$C_{22}H_{18}O_2NCIS$	97 (69)	12	13	11
0	4-hydroxy-3- methoxyphenyl	C ₂₃ H ₂₀ O ₃ NCIS	160 (67)	12	13	9
	Standard Drugs					
	Amoxycillin			25	-	_
	Cloxacillin			-	28.0	_
	Nystatin			-	_	27.0

AJC-2181

ACKNOWLEDGEMENTS

Authors are thankful to RSIC, IIT, Bombay, India for recording ¹H-NMR and to GSFC Baroda for recording IR spectra.

REFERENCES

- 1. E.N. Shaw and E.W. Willey, J. Pharm. Exptl. Therapy, 116, 164 (1956).
- 2. C.J.E. Nimegeer and P.A.I. Janseen, J. Pharm. Pharmacol., 12, 744 (1960).
- 3. Y. Maki and M. Suzuki, Chem. Abstr., 81, 71984 (1984).
- 4. V. Hach and M. Protiva, Chem. Listy, 51, 1909 (1957).
- 5. L. Albert and B. Rczso, Chem. Abstr., 85, 4331b (1976).
- 6. S.R. Modi and H.B. Naik, Oriental J. Chem., 10, 85 (1994).
- 7. Hirashietc Kugita, Chem. Abstr., 76, 59674 (1972).
- 8. Mikhinkoet Chikada, Chem. Abstr., 76, 858547 (1972).

(Received: 17 June 2000; Accepted: 16 November 2000)