Synthesis of Anhydrides from Stobbe Condensation Products

SABA JABBAR* and SHUBHRA BANERJEE†
Department of Chemistry, Dr. Ambedkar College, Nagpur-440 010, India

Synthesis of acid-esters by Stobbe condensation of dimethylsuccinate and aldehydes or ketones, their subsequent hydrolysis to diacids and the formation of anhydrides by different reagents are reported.

Key Words: Synthesis, Anhydrides, Stobbe, Condensation, Products.

INTRODUCTION

Photochromism is observed in anhydrides obtained from the diacids of Stobbe condensation products^{1, 2}. To study, compare and correlate the photochromic properties with the structures and also in the course of synthesis of different indenones and cyclized products, various anhydrides were synthesised by Stobbe condensation of dimethylsuccinate with different carbonyl compounds followed by subsequent saponification and dehydration of the products.

COOMe
$$R_1R_2C=C$$
 $COOH$ $R_1R_2C=C$ CH_2COOH $R_1R_2C=C-CO$ CH_2COOH $COOH$ CO

- (a) $R_1R_2 = Ph, H$,
- (b) $R_1R_2 = p$ -OMePh,
- (c) $R_1R_2 = 3,4,5$ -tri-OMePh, H,

- (d) $R_1R_2 = 2-C_{10}H_7$, H, (g) $R_1R_2 = p-C_1C_6H_4$, Ph,
- (e) $R_1R_2 = 2$ -furyl, H,
- (f) $R_1R_2 = Ph$, Ph, (i) $R_1R_2 = Cyclo C_6H_{10}$,

- (i) $R_1R_2 = \text{Cyclo } C_5H_8$,
- (h) $R_1R_2 = Ph$, Me, (k) $R_1R_2 = Me$, Me,
- (1) $R_1R_2 = Et$, Me,

(m) $R_1R_2 = Cyclohexenyl$.

EXPERIMENTAL

The pH-metric titrations were conducted in aq. ethanol (50:50, v/v) on an automatic recording ECIL pH-meter (Model pH 821) having a glass-calomel electrode assembly ^{1}H NMR spectra in CDCl₃ at 60 MHz on a Varian EM-360 spectrometer (chemical shifts in δ , ppm) using TMS as internal standard. IR

[†]Department of Chemistry, Institute of Science, Nagpur 440 001, India.

		PHYSICAL	AL AND SPEC	CTRAL	DATA OF ACII	D-ESTER (18-	AND SPECTRAL DATA OF ACID-ESTER (18-4), DIACIDS (28-111) AND ANHYDRIDES (38-111)*	
Compd.	Yield (%)	Yield m.p.+ (%)	Eq. wt.\$	pKa	λ _{max} (nm) (log ε)	IR (cm ⁻¹)	¹ H NMR (δ, ppm)	
18	8	١	221 (220)	1	ı	1710, 1680	3.76 (s, 3H, OMe), 3.30 (s, 2H, CH ₂), 7.17 (s, 5H, Ar), 7.80 (s, 1H, CH)	
9	8	119ª	249 (250)	1	1	1705, 1665	3.76, 38.2 (s, 3H each, 2xOMe), 3.51 (s, 2H, CH ₂), 6, 66–7.62, (m, 4H, Ar), 7.77 (s, 1H, CH)	
)c 1	8	194ª	310 (310)	7.5	1	1710, 1687	3.72 (s, 3H, OMe), 3.72 3.77, 3.81 (s, 3H each, 3xOMe), 3.40, (s, 2H, CH ₂) 6.60-6.85 (m, 2H, Ar), 7.78 (s, 1H, CH)	
1d	75	1	272 (270)	1	225 (4.48) 265 (3.84) 290 (3.54)	1720, 1688	3.76 (s, 3H, OMe), 3.66 (s, 2H, CH ₂), 7.20–7.96 (m, 7H, Ar), 8.06 (s, 1H, CH)	
1e	80	182ª	211 (210)	6.1	226 (3.49) 353 4.12	1710, 1670	3.76 (s, 3H, OMe), 3.68 (s, 2H, CH ₂), 6.10–7.50 (m, 3H, Ar), 7.64 (s, 1H, CH)	
11	95	123ª	297 (296)	1	227 (4.20) 266 (4.07)	1710, 1660	3.46 (s, 2H, CH ₂), 3.50 (s, 3H, OMe), 7.20 (s, 10H, Ar).	
1g	79	120ª	328 (330)	1	240 (4.28) 270 (4.23)	1708, 1665	3.38 (s, 2H, CH ₂), 3.42 (s, 3H, OMe), 6.7–7.8 (m, 9H, Ar)	
1	8	1	236 (234)	į	1	1715, 1680	2.02 (s, 3H, Me), 3.25 (s, 2H, CH ₂), 3.65 (s.3H, OMe), 7.15 (s, 5H, AI)	
:	02	96 ₈	211 (212)	1	1	1712, 1690	1.63 (s, 6H, alicy), 2.27 (s, 2H, alicy), 2.67 (s, 2H, alicy), 3.42 (s, 2H, CH ₂), 3.72 (s, 3H, OMe)	
11	98	1	197 (198)	ı	1	ł		
1k	8	1	174 (172)	.1	1	1710, 1690	1.86, 2.19 (s, 3H each, 2XMe), 3.44 (s, 2H, CH ₂), 3.74 (s, 3H, OMe)	
11	65	105ª	188 (186)	1	1	1720, 1692	1.82 (s, 3H, Me), 0.9-1.2 (t, $J = 7$, 3, Me), 2.0–2.70 (q.2H, CH ₂), 3.35 (s, 2H, CH ₂), 3.70 (s, 3H, OMe)	

2a	ı	165ª	104 (104)	5.6°°	225 (3.60)	1695	3.44 (s, 2H, CH ₂), 7.23 (s, 5H, Ar), 7.70 (s, 1H, CH)
2 p		_{_P} Z61	179 (180)	5.55	291 (3.87)	1682	3.73 (s, 3H, OMe), 3.41 (s, 2H, CH ₂), 6.57–7.37 (m, 4H, Ar), 7.63 (s. 1H, CH)
3 c	1	130ª	146 (148)	7.00	299 (3.43) 308 (3.36) 318 (3.37)	1680	3.66, 3.70, 3.80 (s, 2H each, 2x Ome), 3.41 (s, 2H, CH ₂), 6.51-7.31 (m, 2H, Ar), 7.64 (s, 1H, CH)
7q		183°	127 (128)	9.0	227 (2.59) 333 (3.25) 290 (3.54)	1690	3.57 (s, 2H, CH ₂), 7.22–7.92 (m, 7H, Ar), 7.98 (s, 1H, CH)
5		187 ^a	97 (98)	6.03	320 (3.53) 402 (4.12) 420 (3.57)	1683	3.75 (s, 2H, CH ₂), 6.20–7.50 (m, 3H, Ar) 7.88 (s, 1H, CH)
2f	1	166ª	141 (141)	5.15	l	1690	3.33 (s, 2H, CH ₂), 7.16 (s, 10H, Ar)
2g		176ª &183ª	158 (158)		I	1	**
2 h		164°	112 (110)	5.45 9.50	232 (4.19) 276 (4.03)	1695	2, 39 (s, 3H, Me), 3.20 (s, 2H, CH ₂), 7.37 (m, 5H, Ar)
2111	1	183ª	100 (99)	5.63	1	1689	1.48 (s, 6H, alicy), 2.13 (s, 2H, alicy), 2.57 (s, 2H, alicy), 3.23 (s, 2H, CH ₂), 8.46 (s, 2H, COOH)
2j∏		9-	92 (93)	I	1	1698	1.07-2.48 (m, 8H, alicy), 3.2 (s, 2H, CH ₂), 9.57 (s, 2H, COOH)
2кП		172ª	81 (80)	1	i	1696	1.83, 2.1 (2, 3H, 2XMe), 3.27 (s, 2H, CH ₂)
П		149ª	85 (86)	1.	1	1695	1.88 (s, 3H, Me), 0.94–1.24 (t, J = 7, 3H, Me), 2.04–2.38 (q, 2H, CH ₂), 3.36 (s, 2H, CH ₂), 9.3 (s, 2H, COOH)
2m∏	١	145ª	(66) 66	1	1	Į	1.60 (s, 4H, alicy), 2.04 (s, 4H, slivy), 2.45 (q, 1H, CH ₂), 2.94 (q, 1H, CH ₂), 3.44 (q, 1H, CH), 10.99 (s, 2H, COOH)

38	85	155a	1 .	1	221 (3.97) 267 (4.27)	1838, 1865	3.82 (s, 2H, CH ₂), 7.73 (s, 5H, Ar), 7.71 (s, 1H, CH)
3b	8	121a	1	1		1839, 1768	3.68 (s, 2H, CH ₂), 3.83 (s, 3H, OMe), 6.25–7.71 (m, 4H, Ar), 7.81 (s, 1H, CH)
ઝ	83	165a	1,	1	· ·1	1840, 1785	3.52 (s, 2H, CH ₂), 3.65, 3.69, 3.80 (s, 3H each, 3X OMe), 6.05–7.35 (m, 2H, Ar), 7.65 (s, 1H, CH)
%	88	206a	1	1	220 (3.45) 268 (3.59) 305 (3.54)	1845, 1780	3.82 (s, 2H, CH ₂), 7.23–7.98 (m, 7H, Ar), 8.03 (s, 1H, OH)
e	80	152a	1	1	227 (3.62) 402 (4.12) 387 (4.12)	1810, 1762	3.86 (s, 2H, CH ₂), 6.44–7.34 (m, 3H, Ar), 7.54 (s, 1H, CH)
3 £	83	146a	1	I	274 (3.44)	1832, 1765	3.62 (s, 2H, CH ₂ , 7.27 (m, 10H, Ar)
3g	80	128 & 1329, a	I	1	215 (4.53) 239 (4.51)	Ę,	3.67 (s, 2H, CH ₂), 6.8–7.36 (m, 9H, Ar) for E isomer
3h	82		1	. 1	232 (4.91) 278 (3.91)	1830, 1765	2.61 (s, 3H, Me), 3.43 (s, 2H, CH ₂), 7.00-7.47 (m, 5H, Ar)
* •	All the	All the compounds gave satisfactory C and H analyses.	ave satisfact	ory C and	H analyses.	1. 00 1	шол
e [All dill	All almyanaes yielaea ule All thaca diocida fail to m	ed une cornes,	ponung a	racids on reliux	define the recognition called decided with A decided to the A decided to t	. NOTI.
=	All me	All ulese diacids fall to pr	n annoud on	ne respect	oduce the respective annyurides with ACCI.	VIIII ACCI.	
:	pKa ₁ a Z and I	pKa ₁ and pKa ₂ values for diacids. Z and E isomer	es for diacids.				
9	Chars at 230	at 230.					
*	Z isom	Z isomer: 8 63.37 (s, 2H,	2H, CH ₂), 6	.67-8.07	CH ₂), 6.67–8.07 (m, 9H, Ar).		
	E isom	E isomer: δ 3.00 (s, 2H, CH ₂), 6.53-7.86 (m, 9H, Ar).	2H, CH ₂), 6.5	53-7.86 (n	1, 9H, Ar).		
•	Z isom	Z isomer: 4.50, 8.20; E	0; E isomer:	isomer: 4.75, 8.80.	<u>~</u>		
ئ	1850, 1	1770 cm ⁻¹ for	Z and 1840,	1765 cm ⁻	1850, 1770 cm ⁻¹ for Z and 1840, 1765 cm ⁻¹ for E isomer.		
+ 6	Solven	its for crystalli.	Sation: (a)	6He-n-he	xane (50:50 v/	v); (b) C ₆ H ₆ -pe	Solvents for crystallisation: (a) C ₆ H ₆ -n-hexane (50:50 v/v); (b) C ₆ H ₆ -pet.ether (40-60) (50:50 v/v); (c) C ₂ H ₅ -0-C ₂ H ₅ -n-hexane (50:50 v/v).
•	Calcuit	Calculated values are given in parentheses.	e given in pai	rentneses.			

spectra in KBr pellets and nujol mull and UV spectra were measured in ethanol on a DMS-80 (Varian) spectrophotometer. Molecular weight of the acidic products was determined by titrimetric method³ as their equivalent weights.

General procedures for Stobbe condensation and saponification of Stobbe condensation products were similar to those described earlier³⁻⁵. The anhydrides were synthesised⁶ by refluxing corresponding acids with acetyl chloride under anhydrous conditions for 2 h.

RESULTS AND DISCUSSION

The acid-esters¹, 1-alkylidene (or arylidene) methyl succinates (1) were synthesised by Stobbe condensation of dimethylsuccinate with carbonyl compounds. With unsymmetrical ketones, e.g., ethylmethyl ketone and acetophenone, a mixture of geometrical isomers was obtained as the reaction products whereas p-chlorobenzophenone* formed both cis-and trans- products. The products (1) and (2) did not show migration of the double bond† where trans-Ph/COOMe structure was maintained. No changes occurred during the saponification step. However, the anhydrides (3)‡ were easily produced by treatment of the acids with acetyl chloride.

All the products were characterized by their pKa, UV, IR and ¹H NMR data (Table-1) where remarkable similarities in values wre observed with previously synthesised system^{3, 4}.

ACKNOWLEDGEMENT

The authors are grateful to RSIC, CDRI, Lucknow for IR and ¹H NMR spectra.

REFERENCES

- 1. S. Jabbar, Studies in the synthesis and structure of Indenones, Ph. D. Thesis, Nagpur University (1994).
- 2. S. Deshmukh, Cyclization reactions, Ph. D. Thesis, Nagpur University (1992).
- 3. S. Banerjee and G. Bhagavant, *Indian J. Chem.*, 20B, 362 (1981).
- G. Gupta and S. Bhanerjee, Indian J. Chem., 29B, 787 (1990).
- 5. G. Bhagavant and S. Banerjee, Curr. Sci. (India), 44, 846 (1975).
- 6. S. Banerjee, Indian J. Chem., 16B, 487 (1977).

(Received: 26 March 2002; Accepted: 27 May 2002) AJC-2744

^{*}This experiment was repeated several times and the ratio of the (Z): (E) isomers noted which was found to be 2:3 the (E) isomer was formed in high concentration.

[†]The cyclohexenyl product (2m) was obtained by Stobbe reaction in sodium ethoxide at reflux temperature.

[‡]The anhydrides wre studied for their photochromic properties in a photochemical reactor. All the anhydrides yielded the original diacids when hydrolysed with 8% alc. KOH.