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An iterative inversion procedure is used to obtain the effective
isotropic part of the pair-interaction potential for SF¢-SF¢ from the
extended principle of corresponding states. The Lennard-Jones (12-
6) potential energy function is used as the initial model potential
required by the method. Over a range of reduced temperature ex-
tending from 1 to 1000 this directly measured potential for SFg-SFg
fully agrees with the Hartree-Fock-Dispersion (HFD)-type and
Morse-Morse-Spline-vander Waals (MMSV)-type independently
known potentials. This accurate inverted potential can be used in
the calculation of the orientation-averaged viscosity collision inte-
grals and the dimensionless ratios which are essential to calculate
other transport properties. Our method can be applied to calculate
the pair-interaction potential with no need for force fitting data and
lengthy multi-parameter fitting procedure in all temperature ranges.

Key Words: Interaction potential, Collision integrals, Direct
inversion method, Extended principle of corresponding states.

INTRODUCTION

For as long as the idea of atoms and molecules has existed man has speculated
as to the nature of the forces between them. The Greek and Roman atomist
philosophers saw the forces in concrete terms and hence, people used to think
strongly interacting molecules as “hooked and intertangled”. Many observable
properties of matter depend upon pairwise intermolecular potential energy
function. The results of kinetic and statistical-mechanical theories provide
theoretical expression for various equilibrium and non-equilibrium properties in
terms of the potential energy of interaction between a pair of molecules'™,
therefore, the evaluation of such quantities from a known pair-potential energy
function is not especially difficult. However, the inverse operation is not generally
straight forward.

Intermolecular forces are responsible for many of the bulk properties of matter;
for example, a realistic description of the relationship among pressure, volume
and temperature of a gas must include the effects of attractive and repulsive forces
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between molecules. Accurate knowledge of the pair-potential energy functions is
essential in order to obtain quantitatively information on many body forces in a
system. The importance of intermolecular forces has been responsible for their
extensive study for many decades.

Knowledge of the intermolecular potentials opens the way to the calculation
of many observable properties, for microscopic as well as macroscopic systems.
In the first category are the spectra of van der Waals molecule™  and molecular
beam scattering cross-section” 8, elastic or inelastic state-to-state, total or differ-
ential properties®'®. In the second category are various bulk gas and condensed
matter properties. Measured gas phase properties that depend directly on the
intermolecular potential are: virial coefficients; viscosity and diffusion coeffi-
cients and thermal conductivity'*™,

A knowledge of the forces between molecules is fundamental to an under-
standing of the structure and properties of physical and biological materials. There
are a number of elementary papers'*'® concerned with the methodology of the
direct inversion procedure; these reasonably give more than superficial attention
to a consideration of molecular interactions. In recent years, considerable
advances have taken place in the field of intermolecular forces and it is now
possible to give a definitive account of the interactions between many of the
simplest molecules; at the same time the routes to understanding more complex
systems have become easier'>2%. At this level, a far wider range of systems may
be considered by several authors.

Precise determination of the forces between atoms and molecules remains one
of the most important prototypical problems in molecular physics. Determination
of the intermolecular forces from a macroscopic property has the following
restrictive condition: (i) It has to be experimentally measurable with sufficient
accuracy. (ii) It is necessary that there exist a refined theoretical description of
the property.

The relationship between such properties and the forces that exist between
molecules is important because it forms the basis of many of the methods used
to correlate and predict thermophysical properties; these provide the means to
reduce the amount of experimentation required to a manageable level. The same
relationship allows information to be gained about intermolecular potential from
the study of the properties of gases. If we can obtain such information from one
property then we may be able to calculate another useful property of gas, at any
temperature, and thereby relieve ourselves of the need to measure it.

However, there exists a great deal of interest in the scientific community for
obtaining the intermolecular potential energy function to be used in the prediction
of equilibrium and transport properties of gases.

The traditional approach which has a long history for the determination of
neutral-neutral interaction potentials from macroscopic properties is the use of a
mathematical model potential containing a few parameters and adjusting these
parameters such that agreements between theoretical and experimental properties
of matter is obtained. But for example the parameters determined from the
equilibrium properties (second virial coefficients and Joule-Thomson coefficient)
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are slightly different from those determined from non-equlibrium properties
(viscosity and self-diffusion).

For these reasons, one of the central objectives of chemical physics of gases
has been and remains the expression of bulk thermophysical properties in terms
of molecular quantities. In such a description, chemical physicist seek to relate
characteristics of the bulk gas, such as viscosity, to the properties of individual
molecules that make up the gas and the intermolecular potential that exists
between them!™ 1713,

A very precise extended principle of corresponding states has been formulated
for the noble gases and eleven polyatomic gases at low density? 2. It has been
proved that it is capable of correlating equilibrium and transport properties of
noble gases, eleven polyatomic gases and their multi-component mixture, over a
wide temperature range, with an accuracy commensurate to the best measure-
ments?” The principle seeks the maximum use of theory and experiment that can
be obtained without assumptions about the functional form of the pair interaction
potential.

Of particular value is the development of an inversion technique for bulk
properties, which are readily available for a wide variety of substances. The
inversion scheme is an important method for generating the intermolecular
potentials from the bulk properties and their corresponding state correlation.
Among the bulk properties, transport properties and especially viscosity are
among the important sources for the extraction of information about the intermo-
lecular potential energy.

One can ask two questions about any set of measurements of a bulk property:

(i) What specific information about pair-interaction does it contain?

(i) How can the information be extracted directly?

The inversion technique yields reliable answers to the aforesaid questions!
2832 The first inversion of viscosity data was due to Dymond® who used a
method based on one devised by Hirschfelder and Eliason® for calculating
approximate transport properties economically.

We believe that the direct inversion method should serve a dual purpose: (1) to
illustrate and test theoretical principles of kinetic theory of gases; and (2) to
reproduce the reduced collision integrals and their dimensionless ratios, which
are necessary and sufficient information to obtain transport properties of gases.

On the other hand, severe limitations of time and equipment must be faced in
providing a set of experiments that produce physical measurements that yield
quantitative results in a reasonably broad coverage of wide and varied topics of
transport properties of gases.

Meanwhile direct inversion procedures for the potential energy functions of
noble gases and mixtures of polyatomic. gases with nobel gases from data on
viscosity have been re-examined by Najafi et al.,>>>° and others**#! in connec-
tion with the extended principle of corresponding states?’.

It should be mentioned that there is large literature dealing with SF¢ giving an
overwhelming amount of information*> **> some of which is vital for representing
effective isotropic pair interaction potential of SFq.*

In this paper we present an interaction potential energy function for sulfur
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hexafluoride (near-spherical) molecules which were calculated by using the
inversion method based on the eéxperimental reduced collision integral obtained
from corresponding-states correlation?’. By a near-spherical molecule we mean
a molecule which has a number of similar atoms symmetrically distributed over
the surface of a sphere whose centre may or may not be occupied by another
atom. Because of its high degree of symmetry and lack of dipole moments it is
reasonable to base a theoretical treatment of an assembly of near-spherical
molecules on the assumption that the force between any pair of molecules depends
upon their separation but not upon their orientation. Hence, spatially-oriented
internal degrees of freedom are ignored. Comparison of these results with the
HFD-type independently known potential of Mienander** shows good agreement
and clearly adequate.

Collision Integral -

Once the interaction potential is known, transport properties can be obtained
from the Chapman-Enskog solution of the integrodifferential Boltzmann-kinetic
equation, the transport properties (viscosity, thermal conductivity, diffusion
coefficients and thermal diffusion factor) can all be calculated if the reduced
collision integrals, Q%" are known. These collision integrals are Boltzmann
factors of transport cross sections, Q(')*, and defined in the standard source book'2.

The collision integrals, which carry the information of the two-body interac-
tion, are also therefore functions of the intermolecular potential between any two
given particles'' ™3, In the present work, the two-body interaction will be taken
to be between particles.

The collision integral Q5" is the first of a family of consecutive integrals
that arise in the kinetic theory derivations'™*>.

Qe = s+ 1)! KT)** 37 [ QO(E) e B¥T B+ 1 4 ¢))
‘ 0

where E is the relative energy of colliding partner, and Q(i)(E) is a transport cross
section that classically is given by the equation:

QYE) =2n{1 - [1 + (-1’12 + D)} f (1 - cos' B)b db )
0

in which 0 is the relative deflection angle between two colliding partners of energy
E and impact parameter b at the gas temperature.

The deflection angle 0 is calculated as a function of b and E from the classical
equation of motion.

8(b,E)=m-2b I [1 - b%r? = V(t)/E] ™2 dr/r? 3)
fo
where the distance of closest approach ry is the outermost root of
1-b%5— V(ro)/E=0 @
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Numerical differentiation and use of the recursion relation can generate
collision integrals higher than that mentioned,

Qs+ _ )| | 4 1 dlnQ¢9 -
s+2 dln T* .
where the reduced collision integral is defined by
RO i ©)
no’

where © is length scaling factor such that V(0) = 0. Reduced temperature (T*) is
defined as

T" =kT/e @)

€ is energy scaling factor.

Inversion Method

The existence of the refined theoretical description of transport properties is
necessary condition—to within our information—for determination of the forces
between atoms and molecules. Because of the aforesaid restriction, most of our
knowledge has been obtained from properties of dilute gases. By dilute, we mean
that the rates of transport of mass, momentum and energy are controlled by binary
molecular collision. In other words, it means densities sufficiently low that only
two-body collisions need be considered.

The kinetic theory of gases yields theoretical expressions for the viscosity,
thermal conductivity and other transport properties of gases and the results are in
reasonably good agreement with experiment. The rigorous kinetic theory treat-
ment of transport properties in gases is extremely complicated mathematically
and physically. The rigorous expressios underlying transport phenomena in gases
were worked out in 1860 and 1870 by Maxwell and Boltzmann, but it was not
until 1917 that Sydney Chapman and David Enskog, working out independently,
solved the equations“5 .

For a dilute gas the viscosity as given by the rigorous expression for the
viscosity, M, of a dilute gas by the Chapman-Enskog solution of Boltzmann
equation is'

5 (mkpT/m)'?
160 (Q*2")

where m is the molecular mass, kg is the Boltzmann constant, and fn is a “second
order Kihara” correction factor for the calculation of transport properties which
normally differs from unity by only 1 per cent. We have set the value of f,, equal
to unity.

Q> is orientation-averaged reduced viscosity collision integral which is
defined in general form as:

n(T) = fn ®

nll
@@ == [ [ [ Q2" o dicos 8)) d(cos ) ©)
000
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where (Q%?*) is orientation-averaged reduced viscosity collision integral. Writ-
ing the collision integrals in the form of eq (9) is tantamount, by the way, to
assuming that the post-averaging approximation has been used throughout the
entire - temperature range. The transport properties were calculated using
Monchick-Mason approximation which provides a simple scheme whereby the
collision integrals may be calculated. The principal assumptions made in their
approach are first, the energy transfer between translation and internal modes does
not affect the transport properties and, second, the relative angular orientation of
the molecules remains unchanged throughout the collision process. They sug-
gested therefore that the calculation should be performed by computing the fixed
angle collision integrals Q® (T, ¢, 8;, 8,) for the collision of two molecules at
the fixed relative orientation. The collision integral for the effective isotropic
potential is then obtained quite simply by averaging the fixed orientation collision
integrals with equal weight over all space (as mentioned in Eq (9)).

Strictly speaking, the Chapman-Enskog kinetic theory of gases applies only to
monatomic gases (molecules with no internal degrees of freedom for which the
interaction potential is spherically symmetric). Inelastic collisions occur between
molecules with internal degrees of freedom. In these collisions kinetic energy is
. no longer conserved, albeit clearly mass and momentum are conserved. Conse-
quently, the viscosity and diffusion are not appreciably affected by the presence
of the internal degree of freedom, and the theory of monoatomic gases may be
applied to polyatomic molecules with considerable success. On the other hand,vis-
cosity and diffusion involve, respectively, moment and mass transfer, they should
not be affected significantly in the first approximation by internal degrees of
freedom and hence can serve as one of the best sources of information for the
intermolecular forces in polyatomic gases.The viscosity coefficients of polya-
tomic gases are correlated in the extended principle of corresponding states®’ by
the equation:

(Q® 2" = exp [0.46641 — 0.56991 (In T*) + 0.19591 (In T*)? ~ 0.03879 (In T*)*
+0.00259 (In T*)*], 1< T*< 10 (102)

(Q*®2) = (p*0)’[1.04 + a,(In T)™! + ay(In T*) 2 + a5(In T*)3
+a (InT*) ™ 10<T*<100  (10b)

in which (Q%?*) and T* are defined by the eqns. (6, 7). The values of p* and
V: (adopted from ref. 27) are given in Table 3.
‘ The values of a’s are given as follows:

al=0

a2 =-33.0838 + (0t;op*) 2(20.0862 + (72.1059/01,0) + (8.27648/c110)*]

a3 = 101.5710 — (ct;op™)2[56.4472 + (286.3930/a;0) + (17.7610/0;0)?]

a4 = —87.7036 + (0t;op*) [46.3130 + (277.1460/0t;) + (19.0573/0,0)?]  (11)

In the aforesaid relations ;o = In (V(’,l< /10) is the value of & = In (V:/T *) at the
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matching point of T* = 10. No one has yet figured out the correlation formula for
the reduced collision integrals for the polyatomic gases in low temperature region
(T* < 1). The expression of (Q**?) in the low temperature region (T* < 1) has
not been obtained, since (i) the experimental information of viscosity at low
temperatures is not available and (ii) the existence of several long-range
contributions to the interaction potential whose effects on the low-temperature
properties can neither be calculated nor separated.

The inversion technique initiates by estimation of G,,, inversion function, from
an initial model potential such as LJ (12-6). The inversion function is a function
of the reduced temperature(T*) alone'*. We have estimated this function using
LJ (12-6) model as the initial model*.

Given a set of reduced viscosity coefficient collision integrals,
(Q*® Dy, T*)) over a wide range of reduced temperature from the extended law
of corresponding states on the one hand, and estimating the G,, function from
initial model potential LJ (12-6) on the other, it is possible to transform a pair of
datum ((Q*®?), T*) to V/e versus 1/ on the potential energy curve and hence
we can marshal two steps of inversion procedure:

Vie=V* = Gy(1")T* (12)

lo=1"=(Q*®M)1"2 (13)

Equations (12) and (13) are central equations in the inversion scheme.

The new potential is a closer approximation to the true potential energy than
the potential pf the initial model. The new G(T*) can be obtained from square
interpolation among new potentials. These new potentials have been used to
calculate improved collision integrals. Numerical integrations have been carried
out for the evaluation of the integral equations (1-3) with these new potentials.
The above process is repeated until convergence occurs. The convergence criteria
are judged by: (i) the extent to which the calculated collision integrals are in
accordance with the reduced viscosity coefficient collision integrals determined
by the extended law of corresponding states, eq. (10a—10b).In this work, the three
consecutive integrals are evaluated to within an accuracy of 0.1%. This accuracy
is obfained by comparing the calculated values of collision integrals with the
experimental ones in each iteration. (ii) the degree to which the intermolecular
potential energies obtained by inversion method reproduce thermophysical prop-
erties within the experimental accuracy. (iii) the degree to which the potentials
are unchanged from one iteration to the next. It should be said that the rate of
convergence of iterations reflects the differences of detail between the initial
model V: (r*) and true model V*(r*). Our results converged after two iterations
and the results are given in the next section.

RESULTS AND DISCUSSION

We have used our reasonably effective isotropic potential to obtain the
improved collision integrals necessary for the calculation of transport proertiés.
Collision integrals in conjunction with their ratios are shown in Table-1. The ratios
of collision integrals have been calculated by the following equations12 '
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TABLE-1.

’
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(14)

15

(16)

an

(18)

DIMENSIONLESS COLLISION INTEGRALS AND RELATED RATIOS FOR SF¢-SFg

logT* (%% A* B* C* E* F*
0.0 157369  1.12263 121019  0.85644 088471 093161
0.1 141750 111452 117874  0.86288  0.88941 - 0.93401
02 128568  1.10739  1.15163  0.87371  0.89925  0.94063
03 117817  1.10244  1.13036  0.88665 091127  0.95032
04 109174  1.09973  1.11448  0.89984 092311 096154
0.5 102210  1.09863  1.10282 091206 093347 097278
06 096524  1.09835  1.09417 092272 094194  0.98296
07 091794  1.09832  1.08766 093165 094870  0.99150
0.8 087785  1.09830  1.08290 093892 095416  0.99818
0.9 0.84339  1.09840  1.07994 094464 095875  1.00305
1.0 081344  1.09900  1.07879 ~ 094892 096260  1.00650
11 078698  1.10024 107855 095192 096533  1.00941
12 076270  1.10147 107710 095407 096629  1.01273
13 073916 110115 107216 095612 09653  1.01682
14 . 071534 109750 106273 095888 096347  1.02099
1.5 069118  1.08958  1.04974 096289 096215  1.02404
1.6 066755  1.07777  1.03534 096820 096270  1.02505
1.7 064577  1.06354  1.02180 097434 096564  1.02388
1.8 062701  1.04882 101061 098068 097063  1.02113
19 061197 103328  1.00235 098658 097677  1.01767
2.0 060078  1.02397 099691 099162 098308  1.01423

Our effort was just devoted to the calculations for which T* > 1.0. The reason
for this may be stated thus: No one has yet figured out the correlation formula
for the reduced collision integrals for the polyatomic gases in low temperature
regime (T* < 1.0). Hence, we do not have any relation for inversion (such as eq.
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(11)) in this region. Consequently, in order to integrate egs. (1-3) over the given
range it is necessary to extrapolate V(r) in the long range region (low tempera-
ture). The extrapolating function which we used was V* = —C6u6, where Cg is
the dispersion coefficient and u is the reciprocal of the intermolecular distance
(both in atomic units). C4 has been estimated from the latest datum point in the
attractive region.

Regarding the aforesaid discussion and existence of corresponding states
viscosity coefficients at high temperatures (repulsive region) the inversion was
established. It should be mentioned that albeit we used just V*= —Ceu® as
extrapolating function at long range region, the inversion function procedure is
not unduly sensitive to the nature of the used extrapolating functions. This is due
to the fact that the potential will adjust itself during iteration steps. As mentioned
before, the inversion function G,(T*) is found to be remarkably insensitive to the
precise nature of the potential, a feature which greatly enhances the convergence
rate of the inversion. It is worthwhile to be noted that for a given transport
property, G(T) is determined by the ratio of the impact parameter to the distance
of closest approach for a collision at an energy = (s + 1)kT which results in a
deflection angle of 8 ~ 7".!° It is remarkable to mention that in order to maintain
this deflection angle constant as the potential changes, requires the impact
parameter to be changed; the distance of closest approach will change in the same
direction and by roughly the same magnitude due to this small deflection angle,
the impact parameter and the distance of closest approach are similar. One
therefore expects their ratios, and hence the G(T) function (and consequently
extrapolating function), to be essentialy independent of the precise nature of the
potential.

We chose the HFD-type potential model as the reference system as shown in
Fig. 1. The precise value of e/ is 0.98531 for SF¢-SFs. The reason for giving
precise values of these parameters is that it should be sufficient to determine many
properties of gaseous mixtures, because of the existence of a successful limited
principle of corresponding states for low density molecular gases?S, in which the
parameters ¢ and € are used as scale factors of energy and molecular size for the
correlation and prediction of both equilibrium and transport properties?’. The
values of the dimensioned scaling potential parameters obtained in this work are
given in Table-2. Comparison of this result with the HFD-type independently
known potential, Mienander® shows a good agreement and clearly adequate. It
is worthwhile to be noted that the value of o turns out to be equal to the value
of 6y such that V(o,) =0; the precise values of /0, is 0.99614. The result
obtained here covers the range from the potential-energy minimum inwards to a
repulsion of the well depth. In this work, the potential well depth could be
obtained as the relative value with respect to a convenient reference system. Since

TABLE-2 :
DIMENSION OF SCALING PARAMETERS o AND &kg FOR SF¢-SFg

o (A) ek (K)
SFs-SFs 52317 339.69
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the HFD potential*’ used was generated on a sound experimental basis, the
selection of it as reference system is quite reasonable.

As shown in Figs. 1 and 2, the viscosity data provide us only the potentials at
distances r < 6. On the other hand, it can be shown that the width of the potential
energy function is related to the second virial coefficient, B, with the equationsls

Vé=T*-1 (19)
and
-2 = -2nNp/3(B™ - N(TY) (20)
where r; and r: are the reduced coordinates of the outer and inner wall of the
potential well, respectively. The quantity N is Avogadro’s number, N(T*) is the
second virial inversion function tabulated in ref. [15], and B* = 3B/21LN063 is the
reduced second virial coefficient. Knowing the inner branch of the potential well
from the viscosity, we can use this information in conjunction with the second
virial coefficient data to determine the outer branch of the well uniquely (as shown
in Figs. 1 and 2).

05

-05

-1.5

06 ) - 16
r
Fig. 1. Reduced pair interaction potential for SF4-SFg. (#) results obtained by the correspond-
' ing-states viscosity and (O) second virial, (—) the HFD-type potential (model c of ref.
[44]), (- - —) the HFD-type potential (model f of ref. [44;), (== ) the MMSV-type
potential [ref. 49] and (........) the LI(12-6)-type potential*®.. .
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700

400

-100

-200

-400 .

-500

T(A)
Fig. 2. Pair interaction potential for SF¢-SFq. The symbolé are same as in Fig. 1.
TABLE-3

LOW AND HIGH TEMPERATURE DIMENSIONLESS
SCALING PARAMETERS (Taken from ref. [27]).

p* 3
SFe—SFe 0.050 4.067 x 10®

A conclusion central to our study is that it seems to describe an interesting
example of the application of the direct inversion method to calculate the
intermolecular potential energy curve for an important prototypical system. The
inverted potential can be used to obtain reduced collision integrals and their
dimensionless ratios which are needed to calculate other transport properties. This
can be obtained with more accuracy than is possible by a corresponding-state
analysis of such properties, primarily because viscosity measurements are more
accurate than measurements of other properties.

It should also be mentioned that we could observe some discrepancies between
the potential energy obtained from the inversion method, that we have claimed
to be reliable and the potential energy function depicted in Fig 1. These
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discrepancies are explicitly seen in the short-range region. It is worthwhile to be
noted that the revision af the extended principle of the corresponding states by
Najafi et al.® and Bzowski et al.?’ correlates properties of the noble gases,
molecular gases and all their mixtures at low density regime over a very large
temperature range with excellent accuracy and characterizes each binary interac-
tion with the aid of five parameters, i.e., 0, €, V: , p*, C: . C: characterizes well
the long-range attractive tail of potential p* and V: characterizes the short-range
repulsive one. Since the later parameter was rigorously generated on a sound
experimental basis, so the pair-interaction potential obtained via inversion method
is highly reliable.

Calculations of other properties are considerably eased by introducing Table-1.
In this work, the three consecutive integrals are evaluated using the computer
program developed by O’Hara and Smith*’. Therefore, toward the eventual goal
of a fundamental and unambiguous methodology of the inversion procedure, the
objective of the present paper is to understand that the application of the aforesaid
method appears to be quite reasonable.
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