NOTE

Synthesis of New-2,3-Disubstituted Quinoxaline

S.V. KOLHE*, A.G. DOSHI and A.W. RAUT

Postgraduate Department of Chemistry, Shri Shivaji Science College, Morshi Road,

Amravati-444 603, India

 $2-\alpha$ DIbromo-2-(substituted benzyl)-3-nitro-5-chloro coumaran-3-one (1a-p) in methanol condensed with benzene-1,2-diamine in presence of few drops of concentrated H₂SO₄ affords 2,3-disubstituted quinoxaline (IIa-p). The structural elucidation of compounds were done on the basis of analytical and spectral data.

Key words: Synthesis, 2,3-Disubstituted quinoxaline

Quinoxalines are well known for their anti-bacterial antitumor and antiviral properties. Earlier workers have reported various aziridinyl ketones and their cyclic anils by reaction of chalcone dibromide with benzene-1,2-diamine in presence of triethyl amine and their subsequent acid catalysed isomerisation to quinoxaline³. Similarly 2-monoalkyl amino and 2-dialkylamino-4-phenyl benzodiazopines are also reported⁴. Formation of novel Schiff bases contaning tricyclic (7 + 12 + 7) inner ring system has also been reported⁵ in this reaction. Chalcone dibromide condensed with benzene-1,2-diamine to give quinoxaline. Aurone with hydrogen peroxide in alkaline methanol or dioxane gives aurone epoxide which on ring opening, gives 2, β aurone, isomeric with 1,2 diketone structure⁶ which subsequently condense with BDA to give 2,3-disubstituted quinoxalines.

Chalcone dibromide or flavone on condensation with benzene-1,2-diamine gives 2 benzyl-3-phenyl quinoxaline^{7, 8}. Aurone dibromide condense with benzene-1,2-diamine in presence of few drops of conc. H₂SO₄ affords quinoxaline⁹. Aurone dibromide are prepared by known method^{10, 11}.

Melting points were determined in an open capillary tubes and are uncorrected. IR spectra were recorded on Perkin-Elmer-557 Spectrophotometer. PMR spectra were recorded in CDCl₃ on a DRX AC 300 F Spectrophotometer at 300 MHz

Address for correspondence: S.V. Kolhe c/o. Dr. A.W. Raut, 23, Keshav Colony Camp, Amravati-444 602 (India)

Synthesis of 2-(2'-hydroxy-3'-nitro-5'-chlorophenyl)-3-(α'' -hydroxy-4"methoxy) benzyl quinoxaline (II a)

2-α Dibromo-2-(4'-methoxy benzyl)-3-nitro-5-chloro-coumaran-3-one (la) (0.01 m) and benzene 1,2-diamine (0.01 mole) was dissolved in 25 mL methanol 2,3 drops of concentrated H₂SO₄ was added to it. The mixture was refluxed for 3 h, allow to cool, diluted with cold water with constant stirring. Resulting solid was extract with diethyl ether to get 2-(2'-hydroxy-3'-nitro-5'-chlorophenyl)- $3-(\alpha''-hydroxy-4''-methoxy)$ benzyl quinoxaline (IIa).

$$R_1$$
 R_2 R_3 R_4 R_3 R_4 R_4 R_5 R_6 R_4 R_4 R_5 R_6 R_6

Properties of the Compound (IIa)

It is yellowish green crystalline solid, m.p. 156°C. It shows positive ferric chloride test, indicating presence of phenolic hydroxy group. $C_{22}H_{16}N_3O_4Cl$; m.w. 421.7; elemental analysis %, found (calcd.): C = 58.32(58.34), H = 3.76 (3.79), N = 10.22 (10.19) and Cl = 8.45 (8.42).

Infrared spectrum was recorded on Perkin-Elmer 557 Spectrophotometer: 3500-3400 (broad —OH gr. stretching); 1645 (singlet —C=N stretching); 1589 (symmetrical aromatic -NO₂ group); 1348 (unsymmetrical aromatic -NO₂ group); 1022 (—O—CH₃ group stretching); 764 cm⁻¹ (—C—Cl group stretching)

The PMR was recorded in CDCl₃ with TMS as an internal standard: 0.99 δ (1H, --OH); 1.15 δ (1H, --OH); 3.51 δ (3H, aromatic --OCH₃;) 4.86 δ (1H, —CH); 7.23–7.80 δ (10H, aromatic H).

These chemical and spectral data shows that compound (IIa) is 2-(2'-hydroxy-3'-nitro-5'-chlorophenyl)-3- $(\alpha''$ -hydroxy-4"-methoxy) benzyl quinoxaline.

Similarly other compounds were prepared by above method and reported in Table-1.

TABLE-1 SYNTHESIS, m.p. AND YIELD (%) OF DI-SUBSTITUTED QUINOXALINE

Comp. No	R_1	R ₂	R ₃	R ₄	m.p. (°C)	(% Yield)
IIa	NO ₂	OCH ₃	Н	Н	156	70
Ilb	NO_2	Н	Н	Н	140	68
IIc	NO ₂	Н	Н	ОН	75	83
IId	NO ₂	Н	NO_2	Н	138	75
IIe	Н	Н	Н	Н	57	84
IIf	Н	OCH ₃	Н	Н	96	68
IIg	Н	Н	Н	ОН	102	60
IIh	Н	Н	NO_2	Н	155	70
IIi	Br	H	Н	Н	139	65
IIj	Br	OCH ₃	Н	Н	110	72
IIk	Br	Н	Н	ОН	152	81
III	Br	Н	NO_2	Н	149	70
IIm	Cl	Н	Н	Н	96	59
IIn	Cl	OCH ₃	Н	H	125	86
IIo	Cl	Н	Н	ОН	143	65
IIp	Cl	Н	NO ₂	Н	110	75

REFERENCES

- 1. M.L. Edward, R.E. Bambury, and H.W. Ritter, J. Med, Chem. 18, 637, (1975).
- 2. K. Sato., O. Shiratori and K. Katagir, J. Antibiot., 20A, 270 (1967).
- 3. V.P. Orlov, N.P. Vorobeva, N.M. Demenkova, V.S. Chesnoveski and F.G. Varemenko, *Khem Caterotoriki Soedin*, 328 (1988); *Chem, Abstr.*, 110, 8166v (1989).
- 4. K.C. Joshi, V.N. Pathak, P. Aryor and P. Chand, *Pharmazie*, 34, 718, (1979).
- De. J. Cabral, O., M.F. Cabral, MGB Drew, F.S. Esho, O. Hars and S.H. Nelson, J. Chem. Soc. Chem. Commun., 18, 1066, (1982).
- B.A. Brady, M. Geoghegan, W. Sullivan and O. Lvo, J. Chem. Soc. Perkin Trans., 1567 (1969).
- 7. B.S. Hastak and B.J. Ghiya, Indian J. Heterocyclic Chem., 2, 135 (1992).
- 8. A.W. Raut and A.G. Doshi, Oriental J. Chem., 11 179 (1995).
- 9. S.K. Doifode and A.G. Doshi, Oriental J. Chem., 11 175 (1995).
- 10. K.B. Doifode and M.G. Marathe, Indian J. Chem. 2, 2025 (1964).
- 11. M.V. Paranjpe and K.N. Wadodkar, Indian J. Chem., 20B, 808 (1981).

(Received: 16 September 2001; Accepted: 15 February 2002) AJC-2632