Synthesis, IR and ¹³C-NMR Spectral Studies of Some 2-Pyrazolin-5-One Derivatives

MOHAMMAD J. KHARODAWALA and ARJUN K. RANA*

Department of Chemistry, Navjivan Science College, Dahod-389 151, India.

4-Formyloxime-3-methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one, 4-formyloxime - 3-phenyl - 1-(2',4'-dinitrophenyl - pyrazolin-5-one, 4-formyloxime-1-3-diphenyl-2-pyrazolin-5-one, 4-acetyloxime-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one, 4-benzoyloxime-3-methyl-1-(2',4'-di-nitrophenyl)-2-pyrazolin-5-one, 4-oximino-3methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one, 4-oximino-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one have been synthesized. The elemental analysis, m.p., yield (%) FT-IR and ¹³C-NMR spectral studies of all compounds have been reported.

Key Words: Synthesis, Infrared, NMR, 2-Pyrazolin-5-one, Derivatives

INTRODUCTION

In continuation of our earlier work $^{1-6}$ on transition metal complexes of 2-pyrazolin-5-one base heterocyclic- β -diketones and their derivatives, we report here the synthesis, IR and 13 C-NMR spectral studies of (a) 4-formyloxime-3-methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one [FMNPPZ], (b) 4-formyloxime-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one [FPNPPZ], (c) 4-formyloxime-1,3-diphenyl-2-pyrazolin-5-one [FPNPPZ], (d) 4-acetyloxime-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one [APNPPZ] (e) 4-benzoyloxime-3-methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one [BMNPPZ], (f) 4-oximino-3-methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one [OMNPPZ], (g) 4-oximino-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one [OPNPPZ]. The use of above 2-pyrazolin-5-ones for the preparation of transition metal complexes is in progress 1,2 .

EXPERIMENTAL

All chemicals used were of reagent grade (BDH). Melting points of all the compounds were taken in open glass capillary on Tempo melting point apparatus. The ligands were analyzed for carbon, hydrogen and nitrogen on a Carlo-Erba-1108 micro analyzer. The FT-IR spectra were recorded on a Shimadzu-8201 PC FT-IR spectrophotometer in KBr pellets. The ¹³C-NMR spectra were recorded on a Bruker DRX-300 FT-NMR spectrophotometer. The physical and analytical data of all the 2-pyrazolin-5-ones are listed in Table-1.

Synthesis of 2-pyrazolin-5-one derivatives

[I] 3-Methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one (m.p. found: 92°C, reported⁷: 92°C), [II] 3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one (m.p. found: 160°C; reported⁸: 160°C), [III] 4-formyl-3-methyl-1-(2',4'-dinitrophenyl)

Asian J. Chem.

-2-pyrazolin-5-one (m.p. found 130°C), [IV] 4-formyl-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one (m.p. found 90°C), [V] 4-formyl- 1,3-diphenyl-2-pyrazolin-5-one (m.p. found: 141°C, reported: 140–143°C), [VI] 4-acetyl-3-phenyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one (m.p. found: 140°C), [VII] 4-benzoyl-3-methyl-1-(2',4'-dinitrophenyl)-2-pyrazolin-5-one (m.p. found 157°C) were synthesized according to the reported methods¹⁰.

The following general literature¹¹ procedure is used for the preparation of oximes of III, IV, V, VI and VII. A mixture of ethanolic solution (20 mL) of 4-acyl-2-pyrazolin-5-one (0.01 mole), hydroxylamine hydrochloride (0.01 mole) and sodium acetate (1 g) was refluxed for 1-2 h on a water bath. The resulting solution was then poured into ice-water (500 mL) with constant stirring. The isolated solid was filtered, washed several times with water then with ethanol and finally dried in air. The crude product was then recrystallized in ethanol. The oximino derivative of [I] and [II] were prepared according to the reported methods¹⁰.

RESULTS AND DISCUSSION

Infrared Spectra

The ligands FMNPPZ, FPNPPZ, FDPPZ, APNPPZ and BMNPPZ used in the present study may have the following tautomeric forms (A) and (B):

Where,
$$R = \frac{NO_{2}}{10} = -H, -\frac{18}{16} CH_{3}, \frac{R^{11}}{17} CH_{3}, \frac{R^{11}}{17} CH_{3}$$

$$R = \frac{R^{11}}{17} CH_{3}, \frac{R^{11}}{17} CH_{3}$$

$$R^{11} = -H, -\frac{18}{17} CH_{3}, \frac{R^{11}}{17} CH_{3}$$

The IR spectra of the compoundss FMNPPZ, FPNPPZ, FDPPZ, APNPPZ and BMNPPZ show medium broad band with some fine structures in the region $3500-3100 \text{ cm}^{-1}$, which may be due to $\nu(O-H)$ of oxime $+\nu(O-H)$ of 5-(OH) group of pyrazolin ring^{2,11,12}. The observed low value of $\nu(O-H)$ suggests the

presence of intramolecular or intermolecular hydrogen bonding^{2,11,12} in ligands and also suggests the presence of enol form (structure B) of ligands at least in the solid state. The IR spectra of ligands show bands in the region 1422-1220 cm⁻¹, which may be due $V(C-O)^{11,13,14}$. The IR spectra of ligands show bands in the region 1137-1028 cm⁻¹, which may be due to v(N-O) of oximino group¹¹⁻¹³. The infrared spectra of ligands show bands in the region 1689–1670 cm⁻¹, which may be due to v(C=N) (oxime)^{12,13}. The IR spectra of ligands show band in the region 1620-1600 cm⁻¹, which may be due to v(C=N) (pyrazolin ring)¹⁵. The IR spectra of ligands FMNPPZ, FPNPPZ, APNPPZ and BMNPPZ show bands in the region 1340-1330 cm⁻¹, which may be assigned to $v(NO_5)^{1,16}$.

The possible resonance structures of ligands OMNPPZ and OPNPPZ studied in the present work are:

$$R^{l} = -{}^{l}CH_{3}, \frac{R^{l}}{17} = -{}^{l}CH_{3}, \frac{R^{l}}{17$$

The IR spectra of OMNPPZ and OPNPPZ show bands in the region 3390-3380 cm⁻¹, which may be due to v(O—H) of oximino group ¹⁷⁻¹⁹. The observed low value of v(O-H) suggest the presence of intramolecular or intermolecular hydrogen bonding in ligands. These observations suggest that ligands OMNPPZ and OPNPPZ studied in the present work may have tautomeric form [C].

The IR spectra of OMNPPZ and OPNPPZ show a strong band in the region $1740-1735 \text{ cm}^{-1}$, which may be due to $\nu(C=O)$ (pyrazolin ring)²⁰. Infrared spectra of OMNPPZ and OPNPPZ show bands in the region $1622-1618 \text{ cm}^{-1}$, which may be due to $\nu(C=N)$ of oximino group²⁰. The IR spectra of OMNPPZ and OPNPPZ show $\nu(C=N)$ (cyclic) frequencies ^{15, 21} of pyrzolin ring at 1590 cm⁻¹. The (N=O) stretching frequencies observed in the IR spectra of OMNPPZ and OPNPPZ in the range ²⁰ 1024-922 cm⁻¹. Infrared spectra of ligands OMNPPZ and OPNPPZ show bands in the range 1336-1334 cm⁻¹, which may be assigned to $\nu(NO_2)^{1,16}$.

TABLE-1
PHYSICAL AND ANALYTICAL DATA OF COMPOUNDS

Compound	m.f.	Colour	m.p.	Yield	% Analysis, Found (Calcd.)			
Compound	111.11.	Colour	(°C)	(%)	С	Н	N	
FMNPPZ	C ₁₁ H ₉ N ₅ O ₆	Orange	87	67	43.06 (43.00)	3.05 (2.93)	23.06 (22.80)	
FPNPPZ	C ₁₆ H ₁₁ N ₅ O ₆	Reddish orange	140	65	52.63 (52.03)	2.34 (2.98)	18.14 (18.97)	
FDPPZ	C ₁₆ H ₁₃ N ₃ O ₂	Turmeric yellow	101	72	69.09 (68.81)	4.76 (4.66)	15.15 (15.05)	
APNPPZ	C ₁₇ H ₁₃ N ₅ O ₆	Brown	97	61	53.57 (53.26)	3.29 (3.39)	18.56 (18.27)	
BMNPPZ	C ₁₇ H ₁₃ N ₅ O ₆	Light brown	177	59	53.17 (53.26)	3.47 (3.39)	18.47 (18.27)	
OMNPPZ	C ₁₀ H ₇ N ₅ O ₆	Yellow	245	71	41.48 (40.95)	2.47 (2.38)	22.99 (23.89)	
OPNPPZ	C ₁₅ H ₉ N ₅ O ₆	Orange	142	63	50.77 (50.70)	2.67 (2.53)	19.66 (19.72)	

The important infrared vibrational frequencies of all the compounds are listed in Table-2.

¹³C-NMR Spectra

An attempt has been made to characterize ligands by ¹³C-NMR spectral studies. The assignment of ¹³C-NMR shift has been made using reported values for 2-pyrazolin-5-one derivatives ^{17,22-24}. The ¹³C-NMR spectral data of 2-pyrazolin-5-one derivatives are presented in Table-3.

TABLE-2 INFRARED VIBRATIONAL FREQUIENCY (cm⁻¹) OF COMPOUNDS

3	1000 1000 1000 1000 1000 1000 1000 100
	29 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	- 60 60 60 60 60 60 60 60 60 60 60 60 60
	50 51 51 4 FE C
	51 51 41 EI
	21 44 51 5
	21 4 61
	4 4 5 5
	4 8 3
	5 5
	5
	2
	=
1028	10
1107	=
1010	9
962 960	6
914 916	6

TABLE-3 13C-NMR SPECTRAL DATA OF LIGANDS (8) ppm

								Types of	Types of carbon atoms	toms	-					:
Ligand	ϋ	ర	౮	ರ	೮	ぴ	۲	౮	ರ	Cio	CII	C ₁₂	C ₁₃	C14	C ₁₇	Cl8
FMNPPZ	12.3	148.2	99.3	153.7	129.6	128.6 140.8		117.3	123.2	139.5	164.8	ı	-	1	1	1
FPNPPZ	1	144.4	116.8	149.0	137.8	130.1	143.4	126.6	128.7	140.7	167.5	125.0	121.5	122.8	136.3	1
FDPPZ	1	139.8	116.5	145.5	127.4	118.5	125.3	118.5	127.4	128.8	163.6	128.0	119.7	126.0	129.0	1
APNPPZ	1	148.5	114.3	157.0	136.0	127.7	145.2	123.5	124.6	139.0	164.9	120.0	117.5	0.611	128.7	12.6
BMNPPZ	12.6	152.6	104.0	160.4	139.6	129.4	142.1	126.9	128.8	140.6	17	124.0	119.8	121.0	137.8	.
OMNPPZ	14.3	135.1	148.2	177.0	137.1	123.1	141.4	114.2	120.0	140.0	.1	1	1	•	١	١
OPNPPZ	1	141.0	149.2	179.4	134.3	128.5	140.0	125.1	127.2	139.4	i ja 🏚	123.5	120.8	122.5	130.0	1
															-	

ACKNOWLEDGEMENTS

Financial assistance from Gujarat Government, Gandhinagar is gratefuly acknowledged. The authors are thankful to Dahod Anaj Makajan Sarvajanik Education Society, Dahod, Late Shri Girdharlal Sheth, Prof. Y.K. Agrawal, Frof. J.R. Shah and Prof. R.M. Patel for the generous help during the research. Thanks are due to RSIC, Lucknow for providing C, H, N analysis data, FT-IR and ¹³C FT-NMR spectral analysis.

REFERENCES

- 1. M.J. Kharodawala and A.K. Rana, Asian J. Chem., 13, 1168 (2001).
- 2. _____ Asian J. Chem., 14, 703 (2002).
- M.J. Kharodawala, D.S. Raj, D.K. Bhoi, R.R. Shah, H.R. Dabhi and New Chauhan, Orient J. Chem., 17, 291 (2001).
- M.J. Kharodawala, D.S. Raj, D.K. Bhoi, R.R. Shah and H.R. Dabhi, *Oriental J. Chem.*, 17, 327 (2001).
- M.J. Kharodawala, D.K. Bhoi, D.N. Dave, D.M. Suthar, J.M. Patel and H.R. Dabhi, Acta Cienc. Indica, 26, 137 (2000).
- A.K. Rana, H.R. Dabhi, K.T. Joshi and A.M. Pancholi, Oriental J. Chem., 12, 287 (1996) and references therein.
- 7. Z. Chao, Chem. Abstr., 59, 2795 (1963).
- 8. Khromosov-N.V. Borisov, Chem. Abstr., 49, 8257 (1955).
- 9. H.K. Soni and J.R. Shah, Synth. React. Inorg. Met-Org. Chem., 15, 1157 (1985).
- 10. A.K. Rana, Ph. D. Thesis, S.P. University, Vidyanagar (1981).
- 11. Y.M. Patel and J.R. Shah, Synth React. Inorg Met-Org. Chem., 16, 145 (1966).
- H. Cahit Sevindir and Ramzan Mirzaoglu, Synth. React. Inorg. Met-Org. Chem., 23, 757 (1993).
- 13. A.K. Rana and J.R. Shah, Indian J. Chem., 20A, 142 (1981).
- P.S. Mane, S.G. Shirodkar, B.R. Arbad and T.K. Chondhekar, *Indian J. Chem.*, 40A, 648 (2001)
- 15. E.C. Okafor, J. Inorg. Nucl. Chem., 42, 1155 (1980).
- 16. T.N. Srivastava and J.D. Singh, Indian J. Chem., 28A, 422 (1989).
- 17. J. Sharma, Y. Singh and A.K. Rai, Indian J. Chem., 36A, 717 (1997).
- 18. A. Nigam, P. Sharma and Ashok Kumar, Indian J. Chem., 36B, 445 (1997).
- 19. A. Palm and H. Werbin. Canad. J. Chem., 32, 858 (1954).
- 20. N.R. Shah and J.R. Shah, J. Indian Chem. Soc., 58, 851 (1981).
- R.C. Maurya, D.D. Mishra, S. Mukherjee, P.K. Trivedi and S.K. Jaiswal, Synth. React. Inorg. Met-Org. Chem., 23, 723 (1993).
- 22. A. Jain, S. Saxena and A.K. Rai, Indian J. Chem., 30A, 881 (1991).
- 23. E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met.-Org. Chem., 23, 85 (1993).
- 24. B.A. Uzoukwu, K. Gloe and H. Duddeck, Indian J. Chem., 37B, 1180 (1998).
- 25. E.C. Okafor, Polyhedron, 2, 309 (1983).
- 26. E.C. Okafor and B.A. Uzoukwu, Synth. React. Inorg. Met-Org. Chem., 23, 97 (1993).

AJC-2617