Synthesis and Antimicrobial Activity of 1-Phenyl/Substituted Phenyl/Benzyl/Naphthyl-2-Phenyl-4-(3'-Phenoxy Benzylidene)-Imidazoline-5-ones

ANJANI SOLANKEE*, KISHOR KAPADIA, JAYESH PATEL and INDRAJIT THAKOR

Department of Chemistry, B.K.M. Science College, Valsad-396 001, India

2-Phenyl-4-(3'-phenoxy benzylidene)-2-oxazole-5-one react with aromatic/ substituted aronaatic/benzyl/naphthyl amine in presence of pyridine to give 1-phenyl/substituted phenyl/benzyl/naphthyl-2-phenyl-4-(3'-phenoxy benzylidene)-imidazoline-5-ones. The physical and spectral data of the synthesised compounds were determined by elemental and spectral analysis. The synthesised compounds were screened for their in vitro antibacterial activity.

Key words: Synthesis, Antimicrobial activity, Imidazoline-5-one.

INTRODUCTION

In continuation of our work on the synthesis of imidazoline-5-one^{1, 2}, we have prepared some new 1-phenyl/substituted phenyl/benzyl/naphthyl-2-phenyl-4-(3'-phenoxy benzylidene)-imidazoline-5-ones. The methods for the synthesis of imidazoline-5-ones have been reported³⁻⁷. The benzylidene imidazoline-5-ones are biologically active^{8, 9}. Recently imidazoline-5-ones have been reported to possess antibacterial activity^{10, 11}. Imidazoline-5-ones have been found to possess potent CNS depressant¹², anticonvulsant¹³, antiinflammatory¹⁴, sedative and hypnotic activity¹⁵. 1,2,4-Trisubstituted-imidazoline-5-ones have been reported to possess mono amine oxidase (MAO) inhibitory activity¹⁶. This observation prompted us to synthesise 1-phenyl/substituted phenyl/benzyl/naphthyl-2-phenyl-4-(3'-phenoxy benzylidene)-imidazoline-5-ones.

Interaction of aromatic/substituted aromatic/benzyl/naphthyl amine with 2-phenyl-4-(3'-phenoxy benzylidene)-2-oxazole-5-one (azlactone) which was prepared by well known Erlenmeyer azalactone synthesis¹⁷ yields the corresponding 1-phenyl/substituted phenyl/benzyl/naphthyl-2-phenyl-4-(3'-phenoxy benzylidene-imidazoline-5-ones. In this reaction pyridine was used as a solvent.

TABLE-1
PHYSICAL AND ANALYTICAL DATA OF COMPOUNDS

Comp. No.	R	m.f.	m.p (°C)	Elemental analysis %, Found (Calcd.)		
				С	н	N
IIa	phenyl	C ₂₈ H ₂₀ N ₂ O ₂	125	80.70	4.77	6.69
				(80.77)	(4.81)	(6.73)
IIb	2-chloro phenyl	$C_{28}H_{19}N_2O_2Cl$	155	74.48	4.21	6.18
				(74.58)	(4.22)	(6.22)
IIc	3-chloro phenyl	C ₂₈ H ₁₉ N ₂ O ₂ Cl	178	74.56	4.11	6.13
				(74.58)	(4.22)	(6.22)
lld	4-chloro phenyl /	$C_{28}H_{19}N_2O_2Cl$	231	74.58	4.09	6.19
				(74.58)	(4.22)	(6.22)
lle	2-methyl phenyl	$C_{29}H_{22}N_2O_2$	110	80.95	5.15	6.48
				(80.93)	(5.12)	(6.51)
IIf	3-methyl phenyl	$C_{29}H_{22}N_2O_2$	168	80.89	5.01	6.50
				(80.93)	(5.12)	(6.51)
IIg	4-methyl phenyl	$C_{29}H_{22}N_2O_2$	167	80.91	5.06	6.40
				(80.93)	(5.12)	(6.51)
IIh	2-methoxy phenyl	$C_{29}H_{22}N_2O_3$	Limpid	78.01	4.81	6.23
				(78.03)	(4.93)	(6.28)
IIi	3-methoxy phenyl	$C_{29}H_{22}N_2O_3$	160	77.91	4.90	6.28
				(78.03)	(4.93)	(6.28)
Hj	4-methoxy phenyl	$C_{29}H_{22}N_2O_3$	183	78.00	4.88	6.12
				(78.03)	(4.93)	(6.28)
IIk	2-ethyl phenyl	$C_{30}H_{24}N_2O_2$	114	80.90	5.28	6.31
•				(81.08)	(5.40)	(6.31)
Ш	4-ethyl phenyl	$C_{30}H_{24}N_2O_2$	187	81.01	5.38	6.39
**	0	G 11 N 0	* *	(81.08)	(5.40)	(6.31)
IIm	2-ethoxy phenyl	$C_{30}H_{24}N_2O_3$	Limpid	78.26	5.22	6.01
11	4 -44	C II N C	100	(78.26)	(5.22)	(6.09)
IIn	4-ethoxy phenyl	$C_{30}H_{24}N_2O_3$	188	78.15	5.19	6.03
11.	2 aastamida ahaasil	CUNO	102	(78.26)	(5.22)	(6.09)
Ilo	3-acetamido phenyl	C30H23N3O3	103	76.13	4.72	8.70 -
II.	4-acetamido phenyl	C. H. N.O.	164	(76.11) 76.05	(4.86) 4.79	(8.88) 8.75
IIp	4-acetamido phenyi	C30H23N3O3	104		4.79 (4.86)	(8.88)
IIq	2-phenoxy phenyl	C ₃₄ H ₂₄ N ₂ O ₃	175	(76.11) 80.20	4.60	5.40
114	2-phenoxy phenyi	C341124112O3	173	(80.31)	(4.72)	(5.51)
IIr	4-phenoxy phenyl	C ₃₄ H ₂₄ N ₂ O ₃	199	80.25	4.72	5.44
***	4-phenoxy phenyi	C341124112O3	177	(80.31)	(4.72)	(5.51)
IIs	2,3-dichloro phenyl	CaeHaeNaOaCla	impid	69.14	3.66	5.75
113	2,5-dicinoro phonyr	028111811202012	impia	(69.28)	(3.71)	(5.77)
IIt	2,5-dichloro phenyl	CasHisNaOaCla	impid	69.18	3.69	5.72
	_, p	-2010 20 20.2	P.W	(69.28)	(3.71)	(5.77)
IIu	4-bromo phenyl	C ₂₈ H ₁₉ N ₂ O ₂ Br	222	67.80	3.79	5.54
				(67.88)	(3.84)	(5.66)
ΙΙν	1-naphthyl	$C_{32}H_{22}N_2O_2$	160	82.39	4.71	5.93
	• ,•	Ju 40- 4-4		(82.40)	(4.72)	(6.01)
IIw	benzyl	$C_{29}H_{22}N_2O_2$	82	80.80	`5.04	6.39
	•			(80.93)	(5.12)	(6.51)

Comp	Diameter of zone of inhibition (in mm)						
No.	S. aureus	E. coli	P. vulgaris	P. aeruginosa			
IIa	11	14	-	-			
IIb	22	11	10	9			
IIc	16	11	_	-			
IId	13	12	- ,	_			
IIe	17	13	_	-			
IIf	18	15	-	-			
IIg	15	14	_	-			
IIh	13	13	8	9			
IIi	12	13	-	-			
IIj	14	16	-	-			
IIk	16	11	-	-			
III	13	12	-	-			
IIm	19	17	12	11			
IIn	15	16	_	-			
IIo	16	12	9	8			
IIp	12	13	10	10			
IIq	11	11	-	-			
IIr	11	12	_	8			
IIs	18	18	9	10			
IIt	16	14	10	9			
IIu	13	10	13	12			
ΙΙν	16	15	_	10			

TABLE-2 ANTIMICROBIAL ACTIVITY OF COMPOUNDS

EXPERIMENTAL

20

15

All melting points were determined in open capillary and are uncorrected. IR spectra in KBr were taken on Perkin-Elmer 237 spectrophotometer. NMR spectra in CDCl₃ were recorded on Bruker-Avance DPX 200 MHz spectrophotometer. Satisfactory elemental analyses were obtained. Purity of the compounds was checked on TLC using silica gel-G.

General Procedure

IIw

2-Phenyl-4-(3'-phenoxy benzylidene-oxazole-5-one (I) was prepared by the reported method.

Preparation of 1-(4'-methyl phenyl)-2-phsnyl-4-(3'-phenoxy benzylidene)imidazoline-5-one (IIg): A mixture of 2-phenyl-4-(3'-phenoxy benzylidene)oxazole-5-one (0.01 mol), 4-methyl aniline (0.01 mol) and 10 mL of dry pyridine were taken in a round-bottom flask and heated under reflux for 12 h. After that the reaction mixture was poured into crushed ice and HCl. The product obtained 702 Solankee et al. Asian J. Chem.

was filtered or decanted and washed with cold water, dried and recrystallised from suitable solvent. Similarly other compounds were also prepared by the same method.

IR (KBr) cm⁻¹: **IIg**: 1650 v(C=O), 1620 v(C=N), 1590 v(C=C), 1250 v(C-O-C) and 2860 v(-CH₃).

NMR (CDCl₃): IIg: 2.3 δ (s, 3H, CH₃), 7.7 δ {s, 1H, ethylenic proton), 6.5–7.5 δ (m, 18H, aromatic proton).

Antibacterial activity:

The synthesised compounds were tested for their antimicrobial activity against S. aureus, E. coli, P. vulgaris and P. aeruginosa using agar cup method 18 at 100 µg/mL. The zone of inhibition with respect to controlled medium is presented in Table-2. The sensitivity of the compounds against the said microbes was compared with standard drug as penicillin. Zone of inhibition was measured in mm. Most of the compounds show quite good activity towards S. aureus and E. coli while inactive against P. vulgaris and P. aeruginosa.

ACKNOWLEDGEMENTS

The authors are thankful to the Principal and Management of B.K.M. Science College, Valsad for providing Research facilities.

REFERENCES

- Anjani Solanki, Kishore Kapadia, Pankaj Mistry, Jayesh Patel and Smruti Lad, Oriental J. Chem., 16, 155 (2000).
- Ånjani Solanki, Kishore Kapadia, K. Upadhyay and J. Patel, Oriental J. Chem., 17, 315 (2001).
- 3. Archana Jain and Arya K. Mukerjee, J. Indian Chem. Soc., 65, 141 (1988).
- (Miss) A.M. Dave, K.N. Bhatt, N.K. Undavia and P.B. Trivedi, J. Indian Chem. Soc., 65. 294 (1988).
- 5. T.D. Sobha, L. Jirovetz and P.M. Shafi, Asian J. Chem., 4, 1059 (1992).
- 6. A.M. Islam, A.M. Khalil and A.S. El-Houseni, Aust. J. Chem., 26, 1701 (1973).
- 7. D.M. Purohit and Y.H. Shah, Indian J. Heterocyclic Chem., 8, 133 (1998).
- 8. S.S. Tiwari, R. Agarwal and R.K. Satsangi, J. Indian Chem. Soc., 57, 1040 (1980).
- 9. S.S. Tiwari and R.K. Satsangi, J. Indian Chem. Soc., 56, 729 (1979).
- 10. A.V. Naidu and M.A. Dave, Asian J. Chem., 12, 679 (2000).
- 11. Asian J. Chem., 12, 914 (2000).
- 12. T.C. Chadha, H.S. Mahal and Venkataraman, J. Chem. Soc., 1459 (1933).
- 13. K.C. Pandya, R.N. Kurion and V.R. Surange, J. Indian Chem. Soc., 11, 823 (1934).
- 14. Sanjay Swarup, V.K. Saxena and S.R. Chaudhary, Indian J. Pharma. Sci., 51, 124 (1989).
- 15. M.W. Goldberg and H.H. Lehr, U.S, 2, 602086 (1952); Chem. Abstr., 47, 6987d (1953).
- 16. C. Dwivedi, R.D. Halbison, B. Ali and S.S. Parmar, J. Pharm. Sci., 63, 1124 (1974).
- 17. Vogel's Textbook of Practical Organic Chemistry, 5th Edn., p. 747 (1994).
- A.L. Barry, The antimicrobic Susceptibility Test: Principle and Practice, edited by Illus, Lea
 Febiger (Philadelphia Pa, USA, p.180 (1976); Biol. Abstr., 64, 25183 (1977).