NOTE

Comments on the Pyridine Catalysed Reaction of Alcohols with Lead Tetraacetate in Benzene Containing 1% Acetic Acid (v/v)

SUDHEER K. BANERJEE* and R. SHANKER

Department of Chemistry

University College of Science, M.L. Sukhadia University, Udaipur-313 001, India

The role of pyridine in catalysis, as ligand or proton abstracting base, in the lead tetra-acetate oxidation of alcohols has been evaluated using a novel molecular geometry (and kinetics) approach.

Key words: Pyridine, catalysed, reaction, alcohol, lead tetraacetate

Oxidation of some alcohols by lead tetra-acetate (LTA) in benzene containing 1% acetic acid (v/v) proceeds through the formation of dialkoxy Pb(IV) derivative $(RO)_2Pb(OAc)_2$, as evidenced by a second order rate dependence on [R(OH)]. Interestingly in such cases, there is little or no contribution of the rate of disproportionation of monoalkoxy derivative of Pb(IV), $(RO)Pb(OAc)_3$, to the observed overall rate. This follows from a linear plot² of k_0 and [R(OH)], which passes through the origin. Nomally Pb(OAc)₄ is a flattened dodecahedron (triangulated dodecahedron)³. However, the most probable geometry of the dialkoxy Pb(IV) derivative in solution is expected to be a tetrahedron. Thus, due to the release of lattice constraints, Pb(OAc)₄ in solution may also be tetrahedral. The fact that Pb(OAc)₄ undergoes a fast exchange reaction with carboxylic acids⁴ also favours tetrahedral structure in solution over the flattened dodecahedral structure.

If so, the role of pyridine in these reactions needs a re-examination. In presence of pyridine Pb(OAc)₄ py adduct is supposed to be formed⁵, and the dependence on (R(OH)] changes from second order to first order† rate dependence^{1, 2, 7}. Now if the penta-coordinated adduct is the reactive species, then it is expected to be trigonal bipyramidal with pyridine in the trigonal plane. Such a reactive species Pb(OAc)₄ py is bound to form (RO)₂Pb(OAc)₂ py in a much more facile manner than (RO)₂Pb(OAc)₂ in the same medium in absence of pyridine. Experiments do not however support this, and the formation of (RO)Pb(OAc)₃ py is indicated,

[†]This implies that one of the coordination positions of Pb(IV) is fully occupied by pyridine and the contribution of dialkoxy complex is insignificant compared to mono-alkoxy complex in the overall reaction rate. Sterically also, dialkoxy complex formation can be precluded as incompatible with pyridine catalysis (cf. ref. 7 For similar catalysis with 2,6-lutidine.)

which disproportionates because of the labilising influence of Pb-N bond on the Pb-O bond of (RO)Pb(OAc)3·Py. An increase in the concentration of pyridine should limit the rate when [Py] > [Pb(IV)] by limiting the concentration of Pb(OAc)₄·py. This too is not borne out by experiments¹ and a steady increase in rate is observed which has a first order dependence on [py]. We feel that the role of pyridine, here, is one of removal of —C—H as proton. This is supported by primary kinetic isotope effect (cf. Table-1) and the fact that 2,6-lutidine, which cannot complex with Pb(IV), also catalyses these reactions. At [LTA] = 5.0×10^{-3} M, [benzyl alcohol] = 4.37×10^{-2} M and temperature = 308 K, the values of k, were 3.75, 8.20, 12.2 and $15.7 \times 10^{-5} \text{ sec}^{-1}$ at [pyridine] = 0.10, 0.20, 0.30, 0.40 M respectively¹, while k_t were 5.01 and $9.15 \times 10^{-5} \text{ sec}^{-1}$ at [2,6-lutidine] = 0.10 and 0.20 M respectively⁶. (Similar results were obtained with 1-phenyl ethanol.) This certainly rules out the formation of Pb(OAc)₄-py species as the precursor to the rate limiting step. We felt that these bases not only assist the rate limiting step by removing the H of \rightarrow C—H as proton but also assist the formation of the mono-alkoxy derivative (RO)Pb(OAc)3 by removing the H of R(OH), again as proton, thereby increasing the concentration of (RO)Pb(OAc)₃.

- Thus the catalysis due to pyridine and 2,6-lutidine can be summed up as:
- (i) Assisting the formation of (RO)Pb(OAc)3, and
- (ii) Acting as a base in removing the H of $\alpha \rightarrow C$ —H as proton:

TABLE-1 KINETIC ISOTOPE EFFECT IN THE OXIDATION OF BENZHYDROL¹ (cf. Ref 2 also)

[[TA] - 50×	10 ⁻³ M·	[Alcohol	l = 0.05 M; tem	n - 308 K
ILIA = 3.0 X	IU M:	Alconor	$\mathbf{I} = 0.03 \text{ M}; \text{ lem}$	$D_{1} = 300 K$

[Pyridine] M	α-Н	$\begin{array}{c} \alpha\text{-D} \\ (10^5 k_1 \text{sec}^{-1}) \end{array}$	kH/kD
0.00	2.33	1.10	2.01
0.20	18.50	3.80	4.87

TABLE 2 TEMPERATURE DEPENDENCE AND ACTIVATION PARAMETERS1

Alcohol -		$10^3 \text{L}^2 \text{mole}^{-2} \text{sec}^{-1}$				-ΔS*			
	303 K	308 K	313 K	318 K	(kJ mol ⁻¹)	$(J \text{ mol}^{-1} \text{ K}^{-1})$			
In the absence of pyridine									
Benzyl alcohol	16.7	22.6	26.4	32.8	37.4	160			
1-Phenyl ethanol	2.88	3.45	4.41	5.18	31.5	194			
In the presence of pyridine									
Benzyl alcohol	8.95	9.41	12.9	33.6	33.6	178			
1-Phenyl ethanol	4.18	5.66	7.51	9.28	44.1	149			

REFERENCES

- 1. K.K. Banerji, S.K. Banerjee and R. Shanker, Indian J. Chem., 15A, 702 (1977).
- 2. I. Bhatia and K.K. Banerji, J. Chem. Research (M), 1076 (1982).
- 3. B. Kamenar, Acta Cryst., 16A, 34 (1963).
- E.A. Evans, J.L. Huston and T.H. Norris, J. Am. Chem. Soc., 74, 4985 (1952); R.O.C. Norman and M. Poustie, J. Chem. Soc. B, 781 (1968).
- 5. R.E. Partch and J. Monthony, Tetrahedron Letters, 4427 (1967).
- 6. S.K. Banerjee and R. Shanker, Z. Phys. Chemie, 268, 409 (1987).
- 7. S.K. Banerjee, R. Shanker and Om P. Sachdeva, Z. Phys. Chemie, 267, 931 (1986).

(Received: 20 August 2001; Accepted: 23 November 2001) AJC-2535

ICRM2002 3rd International Chemometrics Research Meeting VELDHOVEN, THE NETHERLANDS

26-30 MAY 2002

Contact:

ICRM Secretariat

Process Analysis and Chemometrics, University of Amsterdam Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Tel: (+31-20) 525-6515 Fax: (+31-20) 525-5604 E-mail: icrm@its.chem.uva.nl

URL: http://www.chemometrie.nl/