Kinetics and Mechanism of Oxidation of Phenols by Pyridinium Fluorochromate in Glacial Acetic Acid

S.G. PATIL* and S.B. JOSHI
Department of Chemistry, M.U. Mahavidyalaya, Udgir-413 517 (Dist. Latur), India

Kinetics of oxidation of phenols such as p-hydroxy benzoic acid, p-chloro phenol, m-cresol, p-nitrophenol and p-cresol has been investigated, in glacial acetic acid as a solvent in the temperature range 25–45°C, using pyridinium fluorochromate (PFC) as a mild oxidation agent. The overall order of oxidation of the phenols is found to be two and the individual order as one in each reactant [the stoichiometry of the reaction is 1:1]. An increase in solvent polarity increases the reaction rate. The activation energy and other thermodynamic parameters are determined. A probable reaction mechanism is proposed.

Key words: Kinetics, mechanism, oxidation, phenols, pyridinium fluorochromate.

INTRODUCTION

Pyridinium fluorochromate (PFC) is a very versatile oxidising agent for the oxidation of aromatic compounds. It is a neutral and mild ozidising agent and also a more convenient reagent for selective oxidation. Kinetics and oxidation of some organic substrates¹⁻⁵ by pyridinium dichromate have already been reported. The kinetics and mechanism of oxidation of phenols by pyridinium fluorochromate has been studied extensively in our laboratory in acetic acid medium.

EXPERIMENTAL

Acetic acid (BDH) laboratory reagent (99.5% assay) was dried and distilled according to the method of Orton and Bradfield.

Pyridinium fluorochromate (PFC) was prepared from pyridine, aqueous 40% hydrofluoric acid, chromium(IV) oxide in the molar ratio (1:1.5:1). The bright orange crystalline reagent was isolated by filtration. It was then recrystallised from water (m.p. $106-109^{\circ}$ C). The substrates were purified by recrystallisation. All other chemicals used were of A.R. grade.

Kinetic Measurements: The phenol and PFC solution in acetic acid (5 mL each) in test tubes and glass-stoppered bottles, respectively, were placed in a thermostat at required temperature. After the solutions reached the bath temperature, phenol solution was added quickly into PFC solution and the mixture was allowed to cool for a definite time, after which potassium iodide (10%, 5 mL) solution was added to stop the reaction. Immediately, after 1 min, the liberated iodine was titrated against standard sodium thiosulphate solution.

The kinetic studies were made by determining the concentration of PFC reacted iodometrically and expressing it as a function of time. The overall orders were evaluated by the fractional life method, graphical method and individual

orders from the initial rates as well as by Ostwald's isolation method. The reaction follows 1:1 stoichiometry.

RESULTS AND DISCUSSION

In the oxidation of phenols by PFC in glacial acetic acid solvent the overall order determined by fractional life method is found to be two (Table-1) at low and high concentrations. It is also proved by calculating second order rate constants (K₂) for the oxidation of phenols by PFC in acetic acid at 30°C by a graph of 1/(a - x) vs. time (t) to show overall order as two (Table-1).

The individual order for substrate and PFC determined by isolation method is found to be one (Table-2). It is also proved by calculating first order rate constants (K₁) for the oxidation of phenols by PFC in acetic acid at 30°C by a graph of $\log (a - x) vs.$ time (t) to show overall order as one (Table-2)

The effect of solvent on the second order rate constant of substrate and PFC [0.05 m each] reaction is studied (Table-3). The results show that the dielectric constant and the rate of reaction are directly proportional to each other. The rate of reaction is faster in aqueous acetic acid than in 100% acetic acid. The effect of temperature on the reaction is studied by keeping the concentration of substrate = PFC = 0.05 M in 100% acetic acid. The second order rate constants are determined in the temperature range 25-45°C (Table-4). The energy of activation values are calculated from the graph relating to the rate constants at different temperatures, against 1/T. The other thermodynamic parameters are also calculated. The comparatively small value of energy of activation may be attributed to the rapid oxidation and the high value of energy of activation may be due to slow rate of reaction in the acetic acid medium.

On the basis of the observed results, the following mechanism can be proposed⁶:

Mechanism

TABLE-1

DETERMINATION OF OVERALL ORDER OF OXIDATION OF PHENOLS BY PFC BY FRACTIONAL LIFE METHOD AT 30°C [Phenol] = [PFC]

Substrate	PFC reacted (%)	C ₁ (mol L ⁻¹)	C_2 (mol L^{-1})	t ₁ (sec)	t ₂ (sec)	Order	$K_2 \times 10^5$
p-hydroxy benzoic acid	20	0.050	0.0250	160	300	1.90	0.84
							0.92
	20	0.025	0.0125	300	550	1.86	0.91
p-chloro phenol	20	0.050	0.0250	90	186	2.03	7.56
•							7.64
	20	0.025	0.0125	186	340	1.86	7.41
m-cresol	20	0.050	0.0250	30	62	2.04	10.10
							10.18
	20	0.025	0.0125	62	108	1.92	10.08
p-nitro phenol	20	0.050	0.0250	54	110	2.00	2.86
							2.92
	20	0.025	0.0125	110	218	1.98	2.94
p-cresol	20	0.050	0.0250	27	56	2.03	12.48
•							12.59
	20	0.025	0.0125	56	110	1.96	12.41

 C_1 and C_2 = Initial concentrations; t_1 and t_2 = Time required for constant percentage of reaction

TABLE-2
DETERMINATION OF INDIVIDUAL ORDER OF OXIDATION OF PHENOLS BY PFC IN ACETIC ACID AT 30°C

CETICA	CIDAI	30 C				
PFC reacted (%)	C_1 (mol L^{-1})	C_2 (mol L^{-1})	t ₁ (sec)	t ₂ (sec)	Order	$K_1 \times 10^5$
20	0.010	0.0050	62	74	1.16	2.26
20	0.005	0.0025	74	78	1.12	2.50 2.23
20	0.010	0.0050	44	56	1.20	1.03
20	0.005	0.0025	56	68	1.20	1.09 1.11
						1.11
20	0.010	0.0050	40	48	1.23	2.71
20	0.005	0.0025	48	56	1.23	2.68 2.64
20	0.010	0.0050	106	120	1.17	1.55
20	0.005	0.0025	120	136	1.17	1.54 1.41
20	0.010	0.0050	310	365	1.17	4.10
20	0.005	0.0025	365	400	1.11	4.12 4.09
20	0.010	0.0050	190	220	1.16	5.70
20	0.005	0.0025	220	250	1.11	5.71 5.70
	PFC reacted (%) 20 20 20 20 20 20 20 20 20 20 20 20 20	PFC reacted (mol (%) L ⁻¹) 20 0.010 20 0.005 20 0.010 20 0.005 20 0.010 20 0.005 20 0.010 20 0.005 20 0.010 20 0.005	reacted (mol (mol (%) L-1) L-1) 20 0.010 0.0050 20 0.005 0.0025 20 0.010 0.0050 20 0.005 0.0025 20 0.010 0.0050 20 0.005 0.0025 20 0.010 0.0050 20 0.005 0.0025 20 0.010 0.0050 20 0.005 0.0025 20 0.010 0.0050 20 0.005 0.0025	PFC C ₁ C ₂ cmol (mol (mol (sec)) C-1) C-1 (sec) 20 0.010 0.0050 62 (sec) 20 0.005 0.0025 74 (sec) 20 0.010 0.0050 44 (sec) 20 0.010 0.0050 40 (sec) 20 0.010 0.0050 40 (sec) 20 0.010 0.0050 106 (sec) 20 0.010 0.0050 120 (sec) 20 0.010 0.0050 310 (sec) 20 0.010 0.0050 365 (sec) 20 0.010 0.0050 365 (sec) 20 0.010 0.0050 190 (sec)	PFC C ₁ C ₂ (mol (mol L ⁻¹) (sec) (sec) 20 0.010 0.0050 62 74 20 0.005 0.0025 74 78 20 0.010 0.0050 44 56 20 0.005 0.0025 56 68 20 0.010 0.0050 40 48 20 0.005 0.0025 48 56 20 0.010 0.0050 106 120 20 0.005 0.0025 120 136 20 0.010 0.0050 310 365 20 0.005 0.0025 365 400 20 0.010 0.0050 190 220	PFC C ₁ C ₂ t ₁ t ₂ Order (mol (mol L ⁻¹) L ⁻¹) (sec) (sec) Order (%) L ⁻¹) L ⁻¹) (sec) (sec) Order (%) (%) (mol L ⁻¹) (sec) (sec) Order (%) (%) (mol L ⁻¹) (sec) (sec) Order (%) (%) (sec) (sec) Order (%) (mol L ⁻¹) (sec) (sec) Order (%) Order (%) (sec) Order (%) Order

Substrate	PFC reacted (%)	C ₁ (mol L ⁻¹)	C ₂ (mol L ⁻¹)	t ₁ (sec)	t ₂ (sec)	Order	$K_1 \times 10^5$
p-Nitro phenol		,					
(a) order in p-nitro phenol [PFC]	20	0.010	0.0050	40	48	1.20	2.81
= 0.05 M	20	0.005	0.0025	48	54	1.22	2.80 2.81
(b) order in PFC [p-nitro phenol]	20	0.010	0.0050	30	36	1.23	4.16
= 0.05 M	20	0.005	0.0025	36	42	1.20	4.18 4.12
p.Cresol	•	0.010	0.0050		٠.	1.00	
(a) order in p-cresol [PFC]	20	0.010	0.0050	62	68	1.28	3.10
= 0.05 M	20	0.005	0.0025	68	76	1.11	3.12 3.09
(b) order in PFC [p-cresol]	20	0.010	0.0050	42	50	1.22	5.16
= 0.05 M	20	0.005	0.0025	50	62	,1.21	5.16 5.18

TABLE -3 SOLVENT EFFECT

Temperature = 30° C, [PFC] = [Phenol] = 0.05 M

Solvent % Dielectrical constant (D)		$K_2 \times 10^5 \text{ (mol L}^{-1} \text{ sec}^{-1}\text{)}$								
	Substrate									
		<i>p</i> -hydroxy benzoic acid	p-chloro phenol	m-cresol	p-nitro phenol	p-cresol				
100: 0	6.15	0.86	7.48	10.12	2.90	12.50				
95: 5	8.75	1.66	8.20	10.96	3.10	12.74				
90:10	10.77	2.22	8.64	11.86	3.48	12.98				
85 : 15	12.66	2.98	8.98	12.60	3.90	13.10				
80:20	15.22	3.33	9.40	13.52	4.10	13.40				

TABLE-4 SECOND ORDER RATE CONSTANTS OF OXIDATION OF PHENOLS BY PFC IN ACETIC ACID AT DIFFERENT TEMPERATURES

[Phenol] = [PFC] = 0.05M

	$K_2 \times 10^5 \text{ (mol L}^{-1} \text{ sec}^{-1}\text{)}$					ΔΕ [#] (kJ mol ⁻¹)	ΔH [#] (kJ	-ΔS [#]	ΔG [#] (kJ mol ⁻¹)	log A
Substrate	Temperature (K)									
	298	303	308	313	318	moi)	moi)		moi)	
p-Hydroxy benzoic acid	0.40	0.80	1.58	2.96	4.10	96.40	93.85	32.44	83.92	11.52
p-Chloro phenol	6.82	7.44	8.12	8.92	9.46	77.06	74.76	78.33	50.98	9.15
m-Cresol	6.25	10.00	18.07	25.00	29.60	64.25	61.90	118.21	25.70	7.07
p-Nitro phenol	2.10	2.94	3.30	4.20	4.92	48.18	45.78	181.56	10.08	3.77
p-Cresol	12.08	12.56	12.77	13.12	13.33	31.98	29.52	223.18	38.72	1.60

 ΔH^{*} , ΔS^{*} , ΔG^{*} and log A are calculated at 308 K.

Asian J. Chem.

REFERENCES

- 1. G. Mangalam and S. Meenakshisundaram, J. Indian Chem. Soc., 68, 77 (1991).
- 2. S. Kablin, M. Uma, K. Krishnaswamy and P. Sankar, J. Indian Council Chem., 10, 21 (1994).
- 3. S. Kablim, K. Krishnaswamy and P. Sankar, Oxidation Commun., 18, 288 (1995).
- 4. AN Palaniappan, M. Vellaiswamy and K.G. Sekar, Oxidation Commun., 20, 253 (1997)
- 5. AN Palaniappan, K. Bharathi and K.G. Sekar, Polish J. Chem., 72, 122 (1998)
- 6. AN Palaniappan and M. Ravishankar, Asian J. Chem., 11, 436 (1999).

(Received: 17 July 2001; Accepted: 1 October 2001)

AJC-2463

CALL FOR PAPERS

2002-(26th)-ICST 2002-(26th)-INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY

THURSDAY-FRIDAY (JULY 11-12, 2002)

OTTAWA, CANADA

Papers dealing with the following subjects are now being solicited:

- Analytical/Inorganic and Organic/Physical Chemistry
- Chemical and Civil Engineering
- Biochemistry/Biosciences and Biology
- Chromatography and Spectroscopy
- Environmental Studies: Environmental Pollution, Water and Air Quality
- Pharmaceutical and Medical Sciences, Toxicology, Onchology/Cancer
- Pyrolysis and Thermal Analysis (TG, DTA, etc.)

Two copies of Abstracts and two copies of Biographic Data of the speakers must be received before December 15, 2001.

Registration fee of US\$300 must accompany each paper.

Please send papers and fee by express air mail to:

Dr V.M. BHATNAGAR

Alena Chemicals of Canada

P.O. Box 1779, Cornwall, Ontario K6H 5V7, Canada

Phone: (613) 932-7702 E-mail: ari@ontarioeast.net