NOTE

Effect of Substituents on N-(1-Piperidinobenzyl)acetamide and N-(1-Morpholinobenzyl)acetamide and Their Antimicrobial Activity

N. RAMAN* and S. RAVICHANDRAN

Department of Chemistry, V.H.N.S.N. College, Virudhunagar-626 001, India

Substituted N-(1-piperidinobenzyl)acetamide (PBA) and N-(1-morpholinobenzyl)acetamide (MBA) compounds have been synthesized and characterized by IR, UV and ¹H-NMR spectral analysis. The antimicrobial activity of the compounds has been studied in detail

Key Words: N-(1-Piperidinobenzyl)acetamide; N-(1-Morpholinobenzyl)acetamide, Antimicrobial activity.

It is well known from the literature that compounds containing amide moiety as a functional group have been found to possess donor properties and biological activities¹⁻⁵. In continuation of our interest in the antimicrobial study^{6, 7}, we have synthesized some substituted N-(1-piperidinobenzyl) acetamide (PBA) and N-(1-morpholinobenzyl) acetamide (MBA) compounds and studied the antimicrobial activity to find out the substituent effect on PBA and MBA.

SCHEME

R= H, CH₃, OCH₃, Cl, CN

MBA

All the chemicals were of AR grade. IR spectra were recorded on a Perkin-Elmer 783 spectrophotometer. KBr disc method was used for recording the IR spectra. UV spectra were recorded on Shimadzu 160 UV-Visible spectrophotometer. ¹H-NMR spectra (CDCl₃) were recorded on a JEOL X-90X instrument. Muller-Hinton agar was used for testing the susceptibility of microorganisms to antibacterial agents using the well-diffusion technique

General procedure for preparation of PBA and MBA

The PBA and MBA compounds have been prepared^{8,9} by the reaction of appropriate benzaldehyde with the mixture of acetamide and piperidine or morpholine in 1:1:1 mole ratio.

All the compounds are stable at room temperature and show UV absorption around 270-290 nm. The IR and ¹H-NMR spectral features are as follows:

Infrared bands of PBA observed at 3340, 1642 and 1100 cm⁻¹ have been assigned to v(NH), amide v(C=0) and v(C-N=0) of piperidine group respectively. Similarly, the infrared bands of MBA observed at 3285, 1626 and 1120 cm⁻¹ have been assigned to v(NH), amide v(C=0) and v(C-N-C) of morpholine group respectively. These spectral assignments are consistent with the literature reports^{8, 9}.

The ¹H-NMR spectra of PBA/MBA displayed the expected signals. PBA exhibits a multiplet signal at 7.3-7.5 δ (Ar—H), 6.8 δ (d, 1H, CH), 5.6-5.8 δ (1H, NH), 2.4–2.7 δ (piperidine N-CH₂), 2.2 δ (s, CH₃) and 1.2–1.5 δ (piperidine CH₂). Similarly, MBA shows a multiplet signal at 7.2–7.5 δ (Ar—H), 6.6 δ (d, 1H, CH). 5.7-5.8 δ (1H, NH), 3.5-3.7 δ (morpholine OCH₂), 2.4-2.6 δ (morpholine N-CH₂) and 2.3 δ (s, CH₃).

The PBA and MBA compounds were tested for antimicrobial activity against S. aureus, B. subtilis (Gram positive) and E. coli, P. auroginosa (Gram negative) bacteria by well diffusion method¹⁰. The results are presented in Table-1. The

TABLE-1 ANTIBACTERIAL ACTIVITY OF N-(1-PIPERIDINOBENZYL)ACETAMIDE (PBA) AND N-(1-MORPHOLINOBENZYL)ACETAMIDE (MBA)

No.	Compound -	Inhibition zone (mm) at concentration (100 $\mu g/10~\mu L$)			
		S. aureus	E. coli	B. subtilis	P. auroginosa
1.	Н-РВА	10	11	11	13
2.	4-CH ₃ -PBA	8	9	9	12
3.	4-OCH ₃ -PBA	6	. 8	8	10
4.	4-Cl-PBA	12	14	13	16
5.	4-CN-PBA	16	17	15	18
6.	H-MBA	11	12	10	14
7.	4-CH ₃ -MBA	9	10	8	12
8.	4-OCH ₃ -MBA	7	8	7	9
9.	4-Cl-MBA	13	13	13	15
10.	4-CN-MBA	16	16	16	17

1850 Raman et al. Asian J. Chem.

order of activity of PBA and MBA compounds towards S. aureus, E. coli, B. subtilis and P. auroginosa is: $CN > Cl > H > CH_3 > OCH_3$. It is found that the inhibitory action cets enhanced with the introduction of electron-withdrawing cyano and chlc proups in the phenyl ring. The compounds, however, with electron-releasing thyl and methoxy groups are lesser active compared to unsubstituted phenyl at It appears that there is a linear relationship between logarithm of zone of inhibition and Hammet substituent constant. The substituent constant (σ) for H, CH₃, OCH₃, Cl and CN is 0, -0.17, -0.27, 0.23 and 0.66. According to Hammet, substituents that enhance activity relative to unsubstituted benzene ring will have positive σ values (σ > 0).

ACKNOWLEDGEMENTS

The authors express their sincere thanks to the Head, Department of Chemistry, Principal and Managing Board of V.H.N.S.N. College, Virudhunagar for providing research facilities.

REFERENCES

- 1. R.C. Paul, P. Kapila, A.S. Bedi and K.K. Vasisht, J. Indian Chem. Soc., 53, 768 (1976).
- 2. P.S. Desai and K.R. Desai, J. Indian Chem. Soc., 70, 177 (1993).
- 3. A. Kaushik, Y. Singh and A.K. Rai, Indian J. Chem., 35A, 704 (1996).
- 4. V.H. Shah, H. Patel and A. Parikh, J. Indian Chem. Soc., 59, 678 (1982).
- P. Kumar, R.S. Shukla, A.K. Ramrakhyani, A.K. Sen Gupta and O.P. Srivastava, J. Indian Chem. Soc., 59, 681 (1982).
- 6. N. Raman and S. Ravichandran, Asian J. Chem., 14, 1261 (2002).
- 7. ——, Asian J. Chem., 14, 1766 (2002)
- 8. A.N.M. Kasim, D. Venkappayya and G.V. Prabhu, J. Indian Chem. Soc., 76, 67 (1999).
- 9. N. Raman and S. Ravichandran, Asian J. Chem., 15, 255 (2003).
- C.H. Collin and P.M. Lynes Microbiological Methods, 3rd Edn., Butterworth, London (1970).

(Received: 5 February 2003; Accepted: 12 May 2003)

AJC-3122