NOTE

Synthesis and Antimicrobial Study of Some New Chlorosubstituted 4-Aroyl Isoxazolines

VANDANA V. PARHATE*, M.R. MAURYA, P.R. RAJPUT, P.P. WAGH† and M.K. RAI†

Department of Chemistry Vidya Bharti Mahavidyalaya, Camp, Amravati-444 602, India

Some new chlorosubstituted 4-aroyl isoxalines (2a-d) have been synthesized by the interaction of chlorosubstituted 3-aroyl flavanones (1a-d) with NH₂OH·HCl in DMSO containing a few drops of piperidine. The structural assignments of these compounds are based on their elemental analysis, chemical properties and spectral data. The newly synthesized chlorosubstituted 4-aroylisoxazolines were evaluated for their antimicrobial activity against *E. coli*, *S. aureus*, *P. aeruginosa*, *P. vulgaris* by disc diffusion method. The antibacterial results obtained are very encouraging.

Key Words: Synthesis, Antimicrobial study, Chlorosubstituted 4-aroyl isoxazolines.

Isoxazolines play a vital role owing to their wide range of biological¹⁻⁵ and anticonvulsant⁶. It has been revealed⁷ that substituent in the phenyl ring enhances their antibacterial activity. It was considered worthwhile to synthesize the new chlorosubstituted 4-aroyl isoxazolines to screen them for antimicrobial activity. We report here the synthesis of chlorosubstituted 4-aroyl isoxazolines (2a-d) from chlorosubstituted 3-aroylflavanones (1a-d) and hydroxylamine hydrochloride in DMSO containing a little piperidine. The structures of the compounds (2a-d) were established by elemental analysis, chemical properties and spectral data. These compounds were then assayed against some human pathogens for their antimicrobial activities.

Chlorosubstituted 3-aroyl flavanones (0.01 mol) (1a-d) were separately allowed to be refluxed for 1.5 h with $NH_2OH \cdot HCl$ (0.02 mol) in DMSO (20 mL) containing a few drops of piperidine. After cooling the reaction mixture was acidified with dil. HCl (1:1). The solid products thus separated were filtered, washed first with sodium bicarbonate solution (10%) and then with water. Finally they were separately crystallized from ethanol-acetic acid mixture to get the compounds (2a-d).

[†]P.G. Department of Biotechnology, Amravati-444 602, India

Spectral data of the newly synthesized compound (2c) is as summarized below. IR (nujol) (cm⁻¹) show absorption bands at 3426 v(OH), 1646 v(>C=O), 1603 v(>C=N), 827 v(C—Cl). UV-Vis: (CHCl₃) showed λ_{max} at 367 nm corresponding to $n\rightarrow\pi^*$ transition. PMR: (CDCl₃) showed 3.88 (s, 3H, Ar—OCH₃), 5.21 (d, 1H, CH_A—C_H), 5.63 (d, 1H, CH—CH_B), 6.73–8.17 (m, 10H, Ar—H), 11.5 (s, 1H, Ar—OH).

m.p.s were determined in open capillaries and are uncorrected. Purity of the compounds was checked by TLC on glass coated plates in the laboratory with silica gel-G in benzene and CCl₄.

The molecular formulae, yields, m.p.s and elemental analyses of compounds (2a-d) are presented in Table-1.

TABLE-1
ANALYTICAL AND PHYSICAL DATA OF
3,5-DIARYL-4-AROYL ISOXAZOLINES (2a-d)

Compd.	m.f.	R_1	R ₂	Yield (%)	m.p. (°C)	Found	Calcd.
2a	C ₂₄ H ₁₉ NO ₅ Cl ₂	—OCH ₃	—ОСН3	80	192	2.80	2.96
2 b	$C_{22}H_{15}NO_3Cl_2$	—Н	—н	75	188	3.30	3.39
2c	$C_{23}H_{17}NO_4Cl_2\\$	—Н	—ОСН3	70	180	3.05	3.16
2d	C ₂₃ H ₁₇ NO ₄ Cl ₂	OCH ₃	—Н	75	190	3.09	3.16

Antibacterial activity: All the newly synthesized compounds were screened for their antibacterial activities in vitro against E. coli, S. aureus, P. aeruginosa and P. vulgaris in dioxane medium at a concentration of 100 mg/mL by disc diffusion method⁸. The zones of inhibition were measured in mm (Table-2). The antibacterial results indicate that compounds (2a), (2c) and (2d), bearing methoxy

group were found to exhibit greater degree of antibacterial activities against. P. vulgaris.

However, all the compounds (2a-d) showed moderate activity against E. coli, S. aureus and P. aeruginosa.

TABLE-2 ANTIBACTERIAL ACTIVITY DATA OF 3,5-DIARYL-4-AROYL ISOXAZOLINES

Commonad	Zones of inhibition (mm)						
Compound -	E. coli	S. aureus	P. aeruginosa	P. vulgaris			
2a	9	10	11	14			
2 b	8	11	10	10			
2c	11	12	12	14			
2d	10	11	12	13			

REFERENCES

- 1. G.F. Duffin and J. Kendall, J. Chem. Soc., 405 (1954).
- 2. Z.H. Khalil and A.S. Yamini, J. Chem. Soc., 58, 168 (1981).
- 3. N.K. Mandal, R. Sinha and K.P. Banerjee, Chem. Abstr., 104, 34034v (1986).
- 4. M.D. Ahluwalia, Chem. Abstr., 114, 8166u (1991).
- 5. K.R. Howe, Chem. Abstr., 90, 168590w (1979).
- 6. V.K. Archna, R.C. Shrivastava and A. Kumar, Indian J. Chem., 41B, 2325 (2002).
- 7. B. Noel, C. Groth and Seigfried, Chem. Abstr., 102 (1999).
- 8. R. Cruickshank, J.P. Duguid, B.P. Marmion and R.H.A. Swain, Medical Microbiology, Churchill-Livingstone, Vol. II, p. 190 (1975).

(Received: 19 December 2002; Accepted: 12 May 2003) AJC-3114