Synthesis and Biological Activity of Thiazole, 4-Thiazolidine, Azetidinone Having Tetrahydrocarbazole Moiety M.A. JAMAL AHMAD KHAN and S. SYED SHAFI* Post-Graduate and Research Department of Chemistry, Islamiah College, Vaniyambadi-635 752, India Some new thiazole, 4-oxo-thiazolidine, azetidinone have been synthesized and evaluated for their antimicrobial activity. Structural assignments of these compounds have been made on the basis of elemental analyses and IR spectral data. Key Words: Thiazole, 4-Thiazolidine, Azetidinone, Tetrahydrocarbazole, Synthesis, Biological activity. #### INTRODUCTION In continuation of our work on the synthesis of biologically active heterocycles $^{1-3}$, we contemplated to synthesize 2-amino-4-(tetrahydrocarbazol-9-yl) thiazole, 2-(phenyl)-3-(tetrahydrocarbazolylacetamidyl)-4-oxo-thiazolidine and 9-[α -(2-phenyl-3-chloro-4-oxo-1-azetidinylamino)-acetyl]-9H-tetrahydrocarbaz ole (Scheme-1). Early workers $^{4-6}$ have synthesized various thiazoles, 4-oxo-thiazolidine and azetidinone. All the synthesized compounds 2, 5 and 6 were screened for antimicrobial activity 7,8 against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Aspergillus niger and Penicillum oxaliocum. The compounds were tested at $100 \mu g/mL$ concentration in DMF. #### **EXPERIMENTAL** All melting points were taken in open capillary tubes and are uncorrected. Purity of the compounds was checked by TLC on silica gel-G plates. IR spectra in KBr discs were recorded on Bruker IFS 66V FT-IR spectrophotometer. Elemental analyses of the synthesized compounds were carried out using Hereaus-CHN-rapid analyzer. # **Synthesis** N₉-(Chloroacetyl)-1,2,3,4-tetrahydrocarbazole (1): Tetrahydrocarbazole (0.02 mol, 3.5 g) and chloroacetyl chloride (0.02 mol, 2.5 g) in benzene (50 mL) were refluxed for 4 h. The excess of solvent was distilled off and the residue kept under reduced pressure. The solid thus separated was filtered and crystallized from ethanol to give compound (1). 2-Amino-4-(tetrahydrocarbazol-9-yl)thiazole (2): A mixture of N₉-(chloroacetyl)-tetrahydrocarbazole (1) (0.01 mol, 2.5 g) and thiourea (0.01 mol, 1 g) in ethanol was refluxed for 5 h. The product was filtered off and washed with sodium carbonate solution. It was then crystallized from ethanol to get compound (2). Tetrahydrocarbazol-9-acetyl hydrazine (3): A mixture of N_9 -(chloroacetyl)-tetrahydrocarbazole (1) (0.01 mol, 2.5 g) and hydrazine hydrate (0.04 mol, 2 mL) in absolute ethanol was refluxed for 5 h. The solution was poured into ice-cold water. The resulting solid was filtered, dried and crystallized from ethanol to give compound (3). N₉-(Phenylidenehydrazidomethyl) tetrahydrocarbazole (4): A solution of tetrahydrocarbazol-9-acetyl hydrazine (3) (0.01 mol, 2.5 g) in chloroform (50 mL), benzaldehyde (0.01 mol, 11 mL) and 4–5 drops of glacial acetic acid was refluxed on a water bath for about 8 h, cooled and evaporated to obtain a residue which was crystallized from ethanol to give compound (4). 2-Phenyl-3-(N₉-tetrahydrocarbazolylacetamidyl)-4-oxo-thiazolidine (5): A mixture of N₉-(phenylidenehydrazidomethyl) tetrahydrocarbazole (4) (0.01 mol, 3.3 g) in tetrahydrofuran (30 mL) and mercaptoacetic acid (0.01 mol, 2 mL) with a pinch of anhydrous zinc chloride was refluxed for about 10 h on a water bath. The separated solid was filtered and recrystallized from ethanol to give compound (5). 9-[α -(2-Phenyl-3-chloro-4-oxo-1-azetidinylamino)acetyl]-9H-tetrahydro-carbazole (6): To a well stirred solution of N₉-(phenylidenehydrazidomethyl) tetrahydrocarbazole (4) (0.01 mol, 3.3 g), triethylamine (0.02 mol, 2 mL) in dry 1,4-dioxane (25 mL) was added chloroacetylchloride (0.02 mol, 3 mL) dropwise at room temperature. The reaction mixture was stirred for 1 h and refluxed for 2 h. On removal of dioxane under reduced pressure, a solid was obtained which was crystallized from ethanol to give compound (6). TABLE-1 PHYSICAL DATA AND CHARACTERIZATION OF SYNTHESIZED COMPOUNDS | Compd.
No. | m.f.
(m.w.) | m.p.
(°C) | Yield
(%) | Analysis % Found (Calcd.) | | | 1. | |---------------|---|--------------|--------------|---------------------------|----------------|------------------|--| | | | | | С | Н | N | - IR (cm ⁻¹) | | 1. | C ₁₄ H ₁₄ NOCl
(247.5) | 141 | 70 | 67.18
(67.87) | 5.27
(5.65) | 5.34
(5.65) | 1713 v(C=O) and 714 v(C-Cl) | | 2. | C ₁₅ H ₁₅ N ₃ S
(269) | 169 | 61 | 66.42
(66.91) | 5.13
(5.57) | | 3341 v(NH ₂),
1610 v(C—N) and
630 v(C—S—C) | | 3. | C ₁₄ H ₁₇ N ₃ O
(243) | 64 | 52 | 68.34
(69.13) | 6.16
(6.99) | | 3398 v(NH ₂),
1679 v(C=Ο) and
1466 v(C-N) | | 4. | C ₂₁ H ₂₁ N ₃ O
(331) | 108 | 56 | 75.87
(76.13) | 6.09
(6.34) | 12.31
(12.68) | 1661 v(C=O) and
1621 v(-CH=N-) | | 5. | C ₂₃ H ₂₃ N ₃ OS
(389) | 181 | 48 | 70.32
(70.95) | 5.14
(5.91) | | 1700 v(C=O) and 699 v(C-S-C) | | 6. | C ₂₃ H ₂₂ N ₃ O ₂ Cl
(407.5) | 139 | 35 | 67.54
(67.73) | 5.12
(5.39) | 9.82
(10.30) | 1702 ν(C=O),
1647 ν(CO-NH) and
737 ν(C-Cl) | ## RESULTS AND DISCUSSION Amongst the compounds tested against S. aureus, compound 5 showed high activity, compound 2 showed moderate activity whereas compound 6 exhibited less activity. Compound 2 showed moderate activity against S. typhi. Compounds 5 and 6 reported moderate activity and compound 2 displayed very good activity against A. niger. Compounds 2, 5 and 6 exhibited less activity against P. oxaliocum. # **ACKNOWLEDGEMENT** The authors are thankful to the authorities of Tamilnadu State Council for Science and Technology for financial assistance. #### REFERENCES - 1. S. Syed Shafi and T.R. Radhakrishnan, Indian J. Heterocyclic Chem., 5, 135 (1995). - 2. T.R. Radhakrishnan and S. Syed Shafi, J. Inst. Chemists (India), 71, 141 (1999). - 3. M.A. Jamal Ahmad Khan and S. Syed Shafi, Indian J. Heterocyclic Chem., 11, 111 (2001). - 4. R. Khanna, G. Palit, V.K. Srivastava and K. Shanker, Indian J. Chem., 29B, 556 (1990). - 5. R.S. Lodhi and S.D. Srivastava, Indian J. Chem., 36B, 947 (1997). - 6. V.K. Srivastava, G. Palit and K. Shanker, Indian Drugs, 24, 325 (1987). - 7. A.W. Bauer, W.M.M. Kirby and J.C. Sherris, Am. J. Chem. Path., 45 (1966). - 8. M. Gnanaguru, N. Raman, S. Gopinathan and V. Rajendran, Indian Drugs, 29, 598 (1992). (Received: 30 December 2002; Accepted: 18 April 2003) AJC-3045 # CSI XXXIII 33rd COLLOQUIUM SPECTROSCOPICUM INTERNATIONALE # GRANADA, SPAIN ### **7-12 SEPTEMBER 2003** #### Contact: Professor Alfredo sanz-Medel or Dr Josè M. Costa Department of Physical and Analytical Chemistry University of Orviedo, E-33006 Oviedo, Spain Tel. (+34-985) 103-125 E-mail: asm@sauton.quimica.uniovi.es URL: http://www.csiXXXIII.org