Studies on Furosemide Salicylaldehyde Schiff Base Complex with Copper(II) and Zinc(II)

MAMTA BHATTACHARYA† S.A. IQBAL* and SUMAN MALIK

Department of Chemistry

Saifia College of Science and Education, Bhopal-462 001, India

The synthesis and characterization of metal complexes of Zn(II) and Cu(II) using Schiff base ligand salicylaldehyde-furosemide is reported. Furosemide is a diuretic drug and it is used to increase the rate of urination through kidneys. Analytical data and stoichiometry suggest ligand-metal ratio as 2:1. The structure assigned to the complexes, synthesized via Schiff base formation is supported by infrared spectral studies.

Key Words: Furosemide, Schiff base, Metal Complexes.

Schiff base metal chelates are widely applicable because of their industrial and biological importance and hence have well been studied in the past¹⁻⁴. In continuation of our previous work on metal complexes of established drugs⁵⁻¹⁰, herein, the synthesis and structural studies of furosemide-Cu and furosemide-Zn complexes are described.

All the chemical used were of analytical grade. Pure sample of furosemide (FSD) (m.f. $C_{12}H_{11}N_2O_5S$, m.w. 330.75) was obtained from Geno Pharmaceuticals Pvt. Ltd., Goa. Metal salts $CuCl_2 \cdot 2H_2O$ and $ZnCl_2$ used were of Qualigen Chemicls. Solvents used were methyl alcohol and acetone.

Equimolar solutions of pure drug (0.01 M) and salicylaldehyde (0.01 M) were taken in methanol-water mixture (1:1 ratio). Both the solutions were mixed and refluxed for 3 h. The reaction mixture was kept overnight. Light yellow crystals of furosemide-Schiff base were formed in the reaction mixture, which were washed with 50% methanol, filtered, dried and weighed.

Ligand-Metal ratio and stoichiometry

To confirm the ligand-metal ratio, conductometric titrations using monovariation method were carried out on Systronics conductometer and dip type electrode. Titrations were carried out at 21°C and 20°C respectively for CuCl₂·2H₂O and ZnCl₂.

0.01 M solution of furosemide-Schiff base was prepared in 60% acetone and diluted to 200 mL with same solvent. This Schiff base solution was titrated against

[†]Department of Chemistry, S.V. College, Bairagarh, Bhopal-462 030, India.

0.02 M metal solutions using monovariation method. After making volume corrections the results were plotted in the form of a graph which shows the ligand- metal ratio for Cu and Zn as 2:1. Formation of 2:1 complex was further confirmed by Job's method 10 of continuous variation, modified by Turner and Anderson 11. The stability constants and free energy changes were also calculated (Table-1).

TABLE-I SYNTHESIS AND PHYSICOCHEMICAL CHARACTERISTICS OF COMPLEXES

	Ligand/metal ratio	Colour	Yield (%)	Stability constant log K (L/mol)	Free energy change ΔF (Kcal/mol)
FSD-SB	**************************************	Pale yellow crystals	65		epidyalah
(FSD) ₂ Cu	2:1	Green crystals	40	9.59	-11.680
(FSD) ₂ Zn	2:1	Yellow crystals	32	9.32	-11.456

Synthesis of complexes

For the synthesis of complexes of furosemide-Cu and furosemide-Zn, 0.006 M ligand solution was prepared in 60% acetone and refluxed for 4 h with 0.003 M solution of CuCl₂·2H₂O and ZnCl₂ separately. The refluxed solutions were kept for two days. Solid crystalline compounds appeared in the solutions. Complexes of furosemide-Cu and furosemide-Zn were washed with 60% acetone, filtered, dried and weighed.

TABLE-II
ANALYICAL DATA OF COMPLEXES

Complex	Elen	(2)				
(m,w.)	C C	Н	N	S	Metal	m.p. (°C)
(C ₁₉ H ₁₃ ClN ₂ O ₆ S) ₂ Cu	36.98	2.5	15.69	17.93	8.86	245
(927.6)	(36.00)	(2.91)	(16.67)	(17.50)	(8.91)	
$(C_{11}H_9N_4O_4S_2)_2Z_n$	36.86	2.57	15.60	17.63	8.51	150
(928.6)	(36.89)	(2.51)	(16.17)	(17.50)	(8.61)	

Structure of furosemide Schiff base metal complex

Proposed structure was further confirmed by IR spectral data¹²⁻¹⁶. Bands observed at 1157.6 and 1164.76 cm⁻¹ are characteristic of SO₂—N group. Absorption band at 1410 and 1440 cm⁻¹ shows the presence of chelate ring. Frequency at 680 and 690 cm⁻¹ is characteristic of M—O linkage. Bands at 583 and 586 cm⁻¹ are attributed to M—N linkage while frequencies at 1362 and 1212 cm⁻¹ indicate the S—N linkage. The disappearance of frequencies of phenolic—OH in complex supports its involvement in complexation.

REFERENCES

- 1. A. Kumar, G. Singh and R.N. Handa, *Indian J. Chem.*, 38, 617 (1999).
- 2. J. Mohan and S. Kataria, Indian J. Heterocycl. Chem., 6, 317 (1997).
- 3. R. Qureshi and S.A. Iqbal, Asian J. Chem., 2, 321 (1990).
- 4. S.F. Tan and K.P. Ang, Transition Met. Chem., 9, 390 (1984); 13, 64 (1988).
- 5. C.N.R. Rao and M.C. Ganorkar, *Indian J. Chem.*, **24A**, 877 (1985); **26A**, 887 (1987); **27A**, 52 (1988).
- 6. S.A. Iqbal and R. Qureshi, Asian J. Exp. Sci., 1, 68 (1985).
- 7. S.A. Iqbal, S. Siddiqui, R. Qureshi and A. Desnavi, Orient. J. Chem., 1, 32 (1985).
- 8. R. Qureshi and S.A. Iqbal, Orient. J. Chem., 13 (1997).
- 9. S. Nadkarni, Indian Meteria Medica, Vol. II, p. 51 (1976).
- 10. P. Job, Ann Chim., 10, 113 (1928).
- 11. S.E. Turner and R.C. Anderson, J. Am. Chem. Soc., 71, 912 (1949).
- 12. A.I. Vogel, Quantitative Inorganic Analysis, Longman, Green & Co., London, p. 455 (1954).
- 13. L.J. Bellamy, Chemical Applications of Spectroscopy, Interscience, New York (1956).
- K. Nakamoto, Infrared Spectra of Inorganic and Co-ordination Compounds, John Wiley, New York (1956).
- 15. A. Weissberger, Chemical Applications of Spectroscopy, Interscience, New York (1956).
- 16. C.N.R. Rao, Chemical Applications of IR Spectroscopy, Academic Press, New York (1963).

(Received: 27 January 2005; Accepted: 5 September 2005)