Cytotoxic Investigation of Cynara sibthorpiana

A.M. KHATAB†, E.G. HAGGAG* and M.H. GRACE†

Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt. E-mail: wemisr@hotmail.com

Bioassay guided fractionation of the different extracts of Cynara sibthorpiana against L1210 mouse leukemia cell line, led to the isolation of twelve phenolic compounds identified as caffeic acid 1, esculetin 2, apigenin 3, luteolin 4, quercetin 5, apigenin 7-O-glucoside 7, apigenin 7-O-rutinoside (isorhoifolin) 8, luteolin 7-O-glucoside (cynaroside) 10, luteolin 7-O-rutinoside (scolymoside) 11, apigenin 7-O-rhamnoside 6, scutellarein 7-O-rhamnoside 9, and quercetin 7-O-glucoside 12. The last three flavonoid glycosides are reported in this species for the first time. Caffeic acid, quercetin and quercetin 7-O-glucoside showed significant activity compared to the other isolated compounds showing the importance of the free 3-OH group for the cytotoxic activity.

Key Words: Cynara sibthorpiana, L1210 Cell line, Leukemia, Ouercetin, Casseic acid.

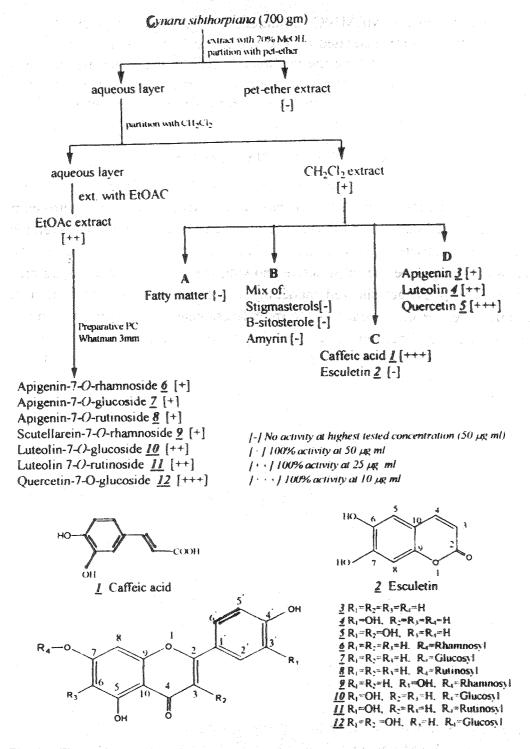
INTRODUCTION

Cynara is a genus of seven annual species belonging to the family Asteraceae, found mainly in the Mediterranean region^{1, 2}. The genus has been used in therapy for its strong choleretic activity causing substantial increase in the amount of bile extract³, as well as for its diuretic, hypochloestrolemic and antilipidemic properties⁴⁻¹⁰.

Cynara sibthorpiana Boiss ed Helder is a wild plant endogenous to Egypt¹¹. It is known for its medicinal value as antihepatotoxic and in the treatment of renal diseases¹². Previous studies on the leaves of *C. sibthorpiana* reported the isolation of a terpenoid alcohol vomifoliol (blumenol A) and three cytotoxic guaianolide sesquiterpene lactones: zaluzanin-C, solstitalin and sibthorphine¹³. Four flavonoid glycosides: apigenin 7-O-glucoside and rutinoside, as well as luteolin 7-O-glucoside and rutinoside were also reported¹⁴, in addition to the isolation of other constituents: taraxasterol acetate, pseudotaraxasterol, lupeol acetate, taraxasterol, stigmasterol, β-sitosterol, palmitic, stearic, linoleic and arachidic acids¹⁵.

In the current study, bioassay guided fractionation against the L1210 mouse leukemia cell line led to the isolation and identification of twelve phenolic compounds. All the isolated compounds were tested for their cytotoxicity, among which caffeic acid, quercetin and quercetin 7-O-glucoside were found to be the most active compounds as anti-leukemic agents.

[†]Department of Natural and Microbial Products, National Research Centre, Cairo, Egypt.


EXPERIMENTAL

Caffeic acid, esculetin, apigenin, luteolin and quercetin were obtained from Sigma (St. Louise, MO, USA). ¹H and ¹³C NMR spectra were recorded on a Varian 500 spectrometer at 500 and 100 MHz, respectively, in acetone-d₆. ESI (both +ve and -ve modes) were recorded on a Micromass ZAB-SE spectrometer (Waters Corporation, Beverly, MA, USA) in the Mass Spectrometry Laboratory of the School of Chemical Sciences, University of Illionis, Urbana-Champaign. Vacuum liquid chromatography was done using silica gel for TLC (Merck-Darmstadt, Germany). Column chromatography was performed either on silica gel for column 70–230 mesh size (Merck-Darmstadt, Germany) or on Lipophilic Sephadex LH-20 (Fluka, Switzerland) with various column dimensions, solvent systems and flow rates. Thin layer chromatography was carried out on pre-coated plates, silica gel 60 with F₂₅₄ fluorescent indicator (Sigma-Aldrich Corporation, Germany) using benzene/ EtOAc 8: 2 and CHCl₃/MeOH 9: 4 as solvent systems and the plates were visualized under UV and sprayed with 5% FeCl₃.

Cynara sibthorpiana Boiss ed Helder aerial parts were collected from the north coast of Egypt in spring 2002. It was air dried and finely ground. A voucher specimen was kindly identified by Dr. Sherif El-Khanagry, Lecturer of Plant Flora Taxonomy Department, Egyptian Museum of Agriculture and kept in the herbarium of the National Research Center, Cairo, Egypt.

Extraction and isolation

Cynara sibthorpiana Boiss ed Helder aerial parts (700 g) were extracted with 70% MeOH by percolation. The aqueous layer after evaporation of methanol under vacuum was extracted successively with petroleum ether (yield 7.3 g), CH₂Cl₂ (yield 5.0 g) and EtOAc (7.4 g). A portion (4g) of the CH₂Cl₂ concentrate was applied to a silica gel column (120 g, ϕ 2.0 cm \times 75 cm), eluting with hexane and increasing proportions of CH₂Cl₂ and MeOH (1-5%), collecting 20 fractions 250 mL each. Similar fractions were pooled together according to TLC profiles to give four main fractions. Fraction A (0.15 g) was fatty matter, fraction B (0.75 g) was a mixture of sterols. Fraction C (0.12 g) was further fractionated on preparative TLC to give compounds 1 (20 mg) and 2 (15 mg). Fraction D (0.18 g) was further separated on Sephadex column (15.0 g, \$\phi\$ 1.5 cm \$\times\$ 60 cm) using EtOH to give compounds 3 (20 mg), 4 (28 mg) and 5 (35 mg). An outline of the separation procedure is shown in Fig. 1. EtOAc concentrate (4 g) was chromatographed on Whatman paper No. 3 using butanol: acetic acid: water (BAW) (4:1:5) and 15% acetic acid¹⁶ as eluting systems. The separated bands were extracted with methanol and purified on Sephadex columns using EtOH as eluting solvent. Paper chromatograms were visualized under UV before and after exposure to ammonia vapour and sprayed with FeCl₃ and Naturstoff reagent 17. Seven flavonoid glycosides could be isolated: 6 (35 mg), 7 (40 mg), 8 (33 mg), 9 (45 mg), 10 (30 mg), 11 (25 mg) and 12 (40 mg). All the isolated compounds were tested for their cytotoxic activity against L1210 mouse leukemia cell line.

Flow scheme of the bioassayed fractionation of Cynara sibthorpiana extracts and the chemical structures of the isolated phenolic compounds

L1210 Bioassay

A modified method 18-24 was used, where experimental samples were made up in MeOH (lab grade) solution and the measured amounts were dried in 18 wells of 24-well plate, the other six wells being reserved as negative controls. Sufficient amounts to make final concentrations of 50, 25, 10, 5, 2.5 and 1.0 µg/mL of each sample were added to the experimental wells. After the solvent had evaporated, one thousand L1210 cells, taken from a flask in exponential growth, were added

to each well in 1 mL of MEM10C (minimum essential medium with 10% calf serum). The plates were incubated for about 72 h until there were 8000 cells in the control wells, at which time the numbers of cells in the experimental wells was estimated by visual observation under an inverted optics phase-contrast microscope and inhibition, the difference between 8000 and the numbers present in the experimental wells, was expressed as a per cent of 8000.

Commercial Residence

RESULTS AND DISCUSSION

The aerial parts of Cynara were extracted with 70% MeOH and the concentrated aqueous alcoholic extract was partitioned successively with petroleum ether, CH₂Cl₂ and finally with EtOAc. The obtained extracts were bioassayed for their cytotoxic activity against L1210 mouse leukemia cell line. The EtOAc extract was found to be the most active showing 100% inhibition at 25 μ g/mL. Also the CH₂Cl₂ extract showed moderate activity giving 100% inhibition at 50 μg/mL. The CH₂Cl₂ extract was further fractionated by column chromatography on silica gel. Fraction A (fatty matter) showed no cytotoxic activity at the highest tested concentration (50 µg/mL), thus it was neglected. Fraction B was identified as a mixture of stigmasterol, \(\beta \)-sitosterol and amyrin (compared with authentic samples), also showed no cytotoxic activity at the highest tested concentration (50 µg/mL). Fractions C and D showed cytotoxic activity (100% inhibition at 50 µg/mL), thus they were purified by preparative TLC to give compounds 1-5. The five compounds were identified by their UV spectral data, MS data and also by comparison with authentic samples as: the phenolic caffeic acid 1 ($R_f S_1 = 0.79$, $S_2 = 0.26$, UV and UV/NH₃ blue, λ_{max} 243, 326 nm, $M^{+1} = 181$ and $M^{-1} = 179$); a coumarin aglycone esculetin 2 (R_f S₁ = 0.78, $S_2 = 0.28$, UV blue, $\lambda_{max} 230$, 260, 303, 351 nm, $M^{+1} = 179$ and $M^{-1} = 177$); and three flavonoid aglycones: apigenin 3 ($R_f S_1 = 0.87$, $S_2 = 0.11$, UV deep purple and UV/NH₃ yellowish green, λ_{max} 267, 296 sh, 336 nm, M⁺¹ = 271 and $M^{-1} = 269$); luteolin 4 (R_f S₁ = 0.77, S₂ = 0.08, UV deep purple and UV/NH₃ yellow, λ_{max} 242 sh, 253, 267, 291 sh, 349 nm, M^{+1} = 287 and M^{-1} = 285); and quercetin 5 ($R_f S_1 = 0.57$, $S_2 = 0.03$, UV and UV/NH₃ yellow, λ_{max} 255, 269 sh, 301 sh, 370 nm, $M^{+1} = 303$ and $M^{-1} = 301$).

When the isolated five compounds were tested against L1210, caffeic acid 1 and quercetin 5 showed significant activity which gave 100% inhibition at 10 μ g/mL, luteolin 4 and apigenin 3 showed lower activity (100% inhibition at 25 μ g/mL and 50 μ g/mL, respectively), while esculetin 2 showed no activity.

The EtOAc extract showing cytotoxic activity (100% inhibition at 25 µg/mL), was separated by preparative paper chromatography to give seven flavonoid glycosides 6–12 which were further purified on sephadex columns. The purified flavonoid glycosides were identified as apigenin-7-O-rhamnoside 6, apigenin-7-O-glucoside 7, apigenin-7-O-rutenoside 8, scutellarin-7-O-rhamnoside 9, luteolin 7-O-glucoside 10, luteolin 7-O-rutinoside 11 and quercetin 7-O-glucoside 12. The purified flavonoid glycosides (6–12) were identified by their spectral data; UV

CHROMATOGRAPHIC PROPERTIES AND UV SPECTRAL DATA OF ISOLATED FLAVONOID GLYCOSIDES 6–12 FROM CYNARA SIBTHORPIANA BOISS ED HELDER

	Rrvalues	ilues	Fluore	Fluorescence	Spra	Spray reagents			UV data Amax (MeOH), nm	(MeOH), nm		
n nodino.	Š	S ₂	NN	UVANH3	FeCl ₃	NA/PE	МеОН	+NaOAc	+H3BO3	+AICI ₃		+NaOMe
9	0.55	0.	Purple	Yellowish	Green	Grayish yellow	268	256 sh, 267 355, 387	267 340	276, 300 348, 386	277, 299 341, 382	245 sh, 269 301 sh, 386
_	0.61	0.23	Purple	Yellowish	Green	Grayish yellow	268	256 sh, 267 355, 387	267 340	276, 300 348, 386	277, 299 341, 382	245 sh, 269 301 sh, 386
&	0.52	0.49	0.49 Purple	Yellowish green	Green	Grayish yellow	268 333	257 sh, 267 354, 387	267	275, 300 348, 382	276, 299 341, 380	245 sh, 267 300 sh, 386
	0.43	0.16	0.16 Purple	Yellowish	Green	Grayish	232sh, 286 334	286	287, 301 sh 370, 428 sh	240 sh, 290 sh, 303 366	240 sh, 288 sh, 303 361	274 378
quad.	0.26	0.30	0.30 Deep purple	Yellow	Green	Orange	255, 267sh 348	259, 266 sh 365, 405	259 372	274, 298 sh 329, 432	273, 294 sh 358, 387	263, 300 sh 394
(zoza)	0.77	80	Deep purple	Yellow	Green	Orange	255, 265sh 349	259, 266 sh 365, 403	258 370	272, 296 sh 331, 432	272, 295 359, 389	263, 299 sh 394
7	0.61	0.23	0.23 Yellow	Fluorescent	Creen	Orange	256, 269sh 372	286 378, 269 sh (decompe)	261, 289 sh 386	259 sh, 273 339, 458	268, 303 sh 365, 426	241 sh, 291 367, 457 (decomp)
				A STATE OF THE STA	Anna Anna Anna Anna Anna Anna Anna Anna	Prince Or other fearing and design and desig	and the state of t	A STREET, SALES AND STREET, SA				

S₁ = butanol/acetic acid/water (BAW 4: 1:5), S₂ = 15% acetic acid in water, Na/PE = Naturstoff reagent, NaOAc = sodium acetate

H NMR SPECT	AL DATA OF ISOLA	TABLE-2 H NMR SPECTRAL DATA OF ISOLATED FLAVONOID GLYCOSIDES 6–12 (8, DMSO-46) FROM CYNARA SIBTHORPIANA BOISS ED HELDER	TABLE-2 YCOSIDES 6–12 (8, D	MSO-d6) FROM CYN	ARA SIBTHORPIANA I	BOISS ED HELDER
	Composite of the	Spanoguad &	Compound 9	Compound 10	Compound 11	Compound 12
Compound o 7.90, <i>d</i> , J = 8.8 Hz	7.90, d, J = 8.8 Hz	7.90, d, J = 8.8 Hz	7.97, d, J = 8.8 Hz	7.45, d, J=2.1 Hz	7.38, d, J = 2.1 Hz	7.56, d, J = 2.1 Hz (1H-2')
2H-2' & 6') 5.90, d, J = 8.8 Hz 2H-3' & 5')	(2H-2' & 6') 6.90, d, J = 8.8 Hz (2H-3' & 5')	(2H-2' & 6') 6.90, d, J = 8.8 Hz (2H-3' & 5')	7.00, s, (1H-8)	7.42, dd, J = 8.8 & $2.1 Hz$	7.35, dd , $J = 8.8 \& 2.1 Hz$	7.54, dd, J = 8.8 & 1.9 Hz (1H-6')
6.83, d. J = 1.9 Hz	6.83, d, J = 1.9 Hz	6.83, d, J = 1.9 Hz	6.94, d, J = 8.8 Hz (2H-3' & 5')	(1H-6) 6.91, d , $J = 8.8 \text{ Hz}$ (1H-5')	(1H-0) 6.90, d , $J = 8.8 \text{ Hz}$ (1H-5)	6.85, d, J = 8.8 Hz (1H-5')
(1H-8) 6.80, s,	(1H-8) 6.80, s. (1H-3)	6.80, s. (1H-3)	6.82, s, (1H-3)	6.71, d, J = 1.9 Hz (1H-8)	6.70, d, J = 1.9 Hz (1H-8)	6.83, d, J = 1.9 Hz (1H-8)
6.46, d, J = 1.9 Hz	6.46, d, J = 1.9 Hz	6.46, d, J = 1.9 Hz	5.53, d, J = 1.9 Hz (1H-1")	6.63, s, (1H-3)	6.64, s, (1H-3)	6.19, d. J = 1.9 Hz $(1H-6)$
5.25, d, J = 1.9 Hz	5.00, d, J = 7.4 Hz (1H-17)	5.09, d, J = 7.4 Hz (1H-1")	3.17–3.94 m. (–2", 3", 4", 5")	6.40, d, J = 1.9 Hz (1H-6)	6.38, d. J = 1.9 Hz (1H-6)	5.04, d, J = 7.4 Hz (1H-1")
3.12-3.99 m,	3.71–3.16 m, (–2″, 3″, 4″, 5″)	4.40, d, J = 1.9 Hz (1H-1")	1.14. d. J = 6.1 Hz (3H-6")	5.07, d, J = 7.4 Hz	5.09, d, J = 7.4 Hz (1H-1")	3.71-3.16 m; (-2", 3", 4", 5")
0.89, d. J = 6.2 Hz 0.89, d. J = 6.2 Hz		3.18–2.75 m. (rutinosyl protons)		3.71-3.16.m. (-2", 3", 4", 5")	4.40, d. J = 1.9 Hz (1H-1")	
		1.08, d, J = 6.1 Hz $(3H-6''')$			3.18–3.75 m, (nutinosyl protons)	
					1.08, d, J = 6.1 Hz (3H-6")	

(using different shift reagents 17, Table-1), 14 NMR (Table-2), 13C NMR (Table-3) and MS where +ve and -ve ESI-MS data showed that the M of 6 = 416, 7 and 9 = 432, 10 = 448, 12 = 464, 8 = 578 and 11 = 594, confirmed by the appearance of corresponding free aglycone peaks when the compounds lose rhamnose units (M-146), glucose units (M-162) or both (M-308). Also flavonoid glycosides were identified chemically by acid hydrolysis 16, where the aglycones detected in the organic fractions were apigenin in compounds 6, 7 and 8, luteolin in 10 and 11, scutellarin in 9 and quercetin in 12. While rhamnose sugar was detected in the aqueous fractions of compounds 6 and 9, glucose was detected in compounds 7, 10 and 12 and both were detected in compounds 8 and 11. Also the obtained data was compared with those reported 17, 25-28

the bress of patients with acture by Eladaka no leakemin 13C NMR SPECTRAL DATA OF ISOLATED FLAVONOID GLYCOSIDES 6-12 (δ, DMSO-d6) ISOLATED FROM CYNARA SIBTHORPIANA BOISS ED HELDER

J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	iasa Iro	a Variable	Chem	ical shift δ	(ppm) 828	naxs e x edi	(11) (3) ⁽¹⁾
Assignments -	6		8 J-6	nsdr g	- 01	geerang U	1212
C-2	164.0	164.0	164.4	164.1	164.5	163.0	147.9
C-3	102.8	102.8	103.3	102.4	193.2	103.5	135.9
C-4	181.0	181.6	181.8	182.2	181.6	182.0	175.9
C-5	161.0	161.0	161.2	147.0	161.1	161.0	160.3
C-6	99.7	99.7	99.6	131.0	99.7	99.8	98.9
C-7	162.7	162.7	162.6	150.7	162.9	164.7	162.7
C-8	94.6	94.6	94.8	94.5	94.9	95.2	94.5
C-9	156.6	156.6	157.0	149.0	156.9	157.1	155.7
C-10	105.1	105.1	105.6	105.7	105.5	105.6	104.7
C-1'	120.7	120.7	121.2	121.3	121.6	121.5	121.9
C-2'	128.3	128.3	128.4	128.4	113.7	113.6	115.5
C-3'	115.7	115.7	116.1	116.0	145.7	145.7	145.0
C-4'	160.8	160.8	161.2	161.1	149.7	150.0	147.8
C-5'	115.7	115.7	116.1	116.0	116.6	116.2	115.4
C-6'	128.3	128.3	128.4	128.4	119.0	119.5	120.1
C-1"	99.3	99.3	101.1	99.3	100.0	101.1	100.3
C-2"	70.1	73.0	73.2	70.1	73.2	73.2	73.2
C-3"	69.9	77.0	76.5	69.9	76.5	76.5	75.6
C-4"	71.8	69.4	69.7	71.8	69.7	69.7	69.9
C-5"	69.9	76.3	75.7	69.9	77.2	75.7	77.2
C-6"	17.8	60.5	66.2	17.8	60.8	66.2	60.9
C-1"			100.6		e partidar di	100.6	and the second
C-2"			70.5		ing the second	70.5	
C-3"'			70.9			70.9	a Maria. Bulanta
C-4"'			72.2			72.2	
C-5"			68.5			68.5	
C-6'''			18.0			18.0	

When the isolated seven flavonoid glycosides (6–12) were tested for their cytotoxic activity against L1210 cell line, the flavonol quercetin-7-O-glucoside (12), which is isolated for the first time from this species, showed significant activity giving 100% activity at 10 µg/mL. Luteolin and its 7-O-glucoside and rutinoside showed lower activity (100% inhibition at 25 µg/mL), while the other flavone compounds were less active showing 100% activity at 50 µg/mL. It can be said that in this case the free 3-OH group is essential for the cytotoxic activity of flavonoids, which accords with reported data of structural activity relationship of flavonoids²⁹. Also the presence of the 3'-OH may enhance the cytotoxic activity when comparing luteolin to apigenin glycosides, though they both show similar proliferative and cytotoxic effect on leukemic cell line (K562, DG75, BB58, B95) and blasts of patients with actute lymphoblastic leukemia³⁰.

MEGLEM CER EXION FOR ACKNOWLEDGEMENT LETA FOR THE MEDICAL PROPERTY OF THE PROP

The authors express their thanks to Dr. George D. Wilson, Senior Research Scientist, University of Illinois, Urbana-Champaign, USA, for his kind help in the L1210 bioassay.

REFERENCES

- 1. V.H. Heywood, Flowering Plants of the World, Oxford University Press, p. 267 (1979).
- 2. F.K. Kupicna, in: D.H. Davis (ed.), Flora of Trukey and in the East Aegia Islands, University Press, Edinburg, p. 327 (1988).
- 3. I. Chinon and C. Harvala, Planta Med., 63, 469 (1954).
- 4. A. Lietti, Fitoterapia, 48, 153 (1977).
- 5. H. Wagner, in: J. Beal and E. Reinhard (Eds.), Natural Products as Medicinal Agents, Hippokrates Verlag, Stuttgart, p. 217 (1981).
- 6. I. Panizzi and L. Scarpati, Nature, 174, 1062 (1951).
- 7. I. Preziosi, IL Farmaco Ed. Sci., 17, 701 (1962).
- 8. W. Englisch, C. Beckers, M. Unkauf, M. Ruepp and V. Zinserling, Arzeneimittel-Forschung, 50, 260 (2000).
- 9. F. Sanchez-Rabaneda, O. Jauregui, R.M. Lamuela-Raventos, J. Bastida, F. Vilaomat and C. Codina, J. Chromatogr. A, 1008, 57 (2003).
- 10. F.M. Hammouda, M.M.S. El-Nasr, S.I. Ismail and A.A. Shahat, *Intern. J. Pharmacognosy*, 31, 299 (1993).
- 11. V. Tackholm, Students Flora of Egypt, Cairo University Press, p. 536 (1974).
- 12. G. Soliman, Egypt. Pharm. Bull., 44, 19 (1962).
- 13. A.A. Omar, T.M. Sarg, S.M. Khafagy, Y.E. Ibrahim and M. Grenz, *Phytochemistry*, 23, 2381 (1984).
- 14. M.A. El-Ansari, S.I. El-Negoumy and N.A.M. Saleh, Biochem. System. Ecol., 16, 285 (1988).
- 15. M.H. El-Gamal, N.M. Shalaby and H. Duddeck, Fitoterapia, 62, 361 (1991).
- 16. T.J. Mabry, K.R. Markham and M.B. Thomas, The Systematic Identification of Flavonoids, Springer-Verlag, New York-Heidelberg-Berlin, p. 35 (1970).
- 17. T. Brasseur and L. Angenot, J. Chromatogr., 35, 351 (1986).
- 18. B.J. Abbott, Cancer Treat. Rep., 60, 1007 (1976).

- 19. F.A. Weaver, A.R. Torkelson, W.A. Zygmunt and H.P. Browder, J. Pharm. Sci., 67, 1009 Derivatives of 4-Pyranest (1978).
- 20. D.P. Griswold (Jr.), M.W. Trader, E. Frei (3rd), W.I. Peters, M.K. Wolpert and W.R. Laster (Jr.), Cancer Res., 47, 2323 (1987).
- 21. N.M. Horlock, G.D. Wilson, F.M. Daley, P.I. Richman and R. Sanders, Eur. J. Surg. Oncol., 23, 247 (1997).
- 22. G.D. Wilson, Acta Oncol., 40, 989 (2001).
- 23. E.A. Goun, V.M. Petrichenko, S.U. Solodnikov, T.V. Suhinir, M.A. Kline, G. Cunningham, C. Nguyen and H. Miles, J. Ethnopharmacol., 81, 337 (2002).
- 24. C.G. Loukas, G.D. Wilson, B. Vojnovic and A. Linney, Cytometry A, 55, 30 (2003).
- 25. K.R. Markham, Techniques of Flavonoids Identification, Academic Press, London (1982).
- 26. J.B. Harborne and T.J. Mabry, The Flavonoids: Advances in Research, Chapman & Hall, London-New York, p. 735 (1982). Id. 1989; diag. 3883 (1982).
- 27. P.K. Agarwal, ¹³C-NMR of Flavonoids (Chapter 6), in: P.K. Agrawal and M.C. Bansal (Eds.), Flavonoid Glycosides, Elsevier Science Ltd., New York, p. 318 (1989).
- 28. A.G.R. Nair, T.R. Seetharaman, B. Voirn and J. Favre-Bonvin, Phytochemistry, 25, 768
- 29. E. Middleton (Jr.), C. Kandaswami and T.C. Theoharides, Pharmacol. Rev., 52, 673 (2000).
- 30. B. Aatasever, K. Akgun-Dar, S. Erden-Kuruca, N. Turan, V. Seyhanli and A. Mericli, Ankara Universitesi Ecacilik Fakultesi Dergisi, 32, 1430 (2003).

(Received: 7 March 2005; Accepted: 26 September 2005)

AJC-4419