Synthesis and Non-linear Optical Properties of Two New Tridentate Mono Azo Schiff-Base Compounds

IRAN SHEIKHSHOAIE*, MOHAMMAD HOSEIN MASHHADIZADEH and NIAZ MONADI

Chemistry Department, Shahid-Bahonar University of Kerman, Kerman, Iran Tel & Fax: (98)(341)3222033; E-mail: ishoaie@yahoo.com

In the present work, two dissymmetric tridentate mono azo Schiff base ligands 5-((4-methyl phenyl)azo)-N-(N,N-dimethyl ethylamine) salicylaldimine and 5-((4-nitrophenyl) azo)-N-(N,N-dimethyl ethylamine) salicylaldimine were prepared by the reaction of precursor ligands with appropriate N,N-dimethyl ethylamine and characterized by FTIR, ¹H NMR, ¹³C NMR, C, H and N elemental analyses and UV-Vis spectroscopy methods. In the other part of this work, some theoretical calculations were done on the structures by semi-empirical and ab-initio methods using AMI, PM3 and MINDO/I Hamiltonians and the geometries of two synthesized tridentate ligands were optimized and then the non-linear optical properties of these ligands were characterized by theoretical calculations.

Key Words: NLO property, Salicylaldehyde, Schiff-base, Theoretical methods.

INTRODUCTION

Schiff-base ligands are one of the oldest classes of ligands in coordination chemistry and these compounds have been used extensively for coordination with transition and main group metal ions¹. Also Schiff-base compounds have been studied in great details for various applications in chemistry²⁻¹⁰. On the other hand, N-donor ligands is an active field of chemical research and there are very reports of this type of Schiff-base ligands.

The interest in non-linear optics has grown tremendously in recent years, primaryily because of the telecommunication industry, need for high-bandwidth optical switching and processing devices to service the information and data transmission needs of the computer age and of the proliferation of sophisticated laser tools^{11–13}.

Quantum chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular non-linear optical (NLO) processes^{14, 15}. Recently, there have been some reports that the NLO of organic compounds might increase by staggering of aromatic donor and acceptor subunits^{16, 17}.

With the above considerations in mind, we have designed and synthesized two new tridentate Schiff-base compounds, characterized their structures and studied the structures by using with AM1, PM3 and MINDO/1 semi-empirical methods. The calculated NLO property (β) for 5-((4-nitro phenyl)azo)-N-(N,N-dimethyl ethylamine)salicylaldimine ligand is 122.5 times of that of urea ¹⁶.

EXPERIMENTAL

All of the chemicals and solvents were of analytical reagent grade and were obtained commercially from Merck. The solvents were purified by standard methods. Two precursor ligands, 5-((4-methyl phenyl)azo)salicylaldehyde and 5-((4-nitro phenyl)azo)salicylaldehyde were synthesized according to previous procedure.

Elemental analyses for C, H and N were performed using a Perkin-Elmer analyzer. Infrared (FTIR) spectra were recorded using KBr discs on an FTIR Shimadzu Dr-8001 in the range of 4000-400 cm⁻¹. ¹H and ¹³C NMR spectra were taken in DMSO on a Bruker Spectrospin Avance 400 MHz ultra shield spectrometer and chemical shifts are indicated in ppm relative to tetramethylsilane (TMS). The UV-Vis spectra were recorded with a Beckman DU-7000 spectrometer and mass spectra were recorded on a Finnigenmat G C-MSDS spectrometer model 8430.

Synthesis of Schiff-base compounds

The tridentate Schiff-base ligands, 5-((4-methyl phenyl)azo)-N-(N,N-dimethyl ethylamine)salicylaldimine (a) and 5-((4-nitro phenyl)azo)-N-(N,N-dimethyl ethylamine)salicylaldimine (b) were prepared in high yields (45-55%) via condensation of ethanolic solution of the appropriate precursor ligands with 1-amino-2-(N,N)-dimethylamine according to Scheme-1¹⁸.

R
$$\rightarrow$$
 OH + $H_2N-(CH_2)_2-N(CH_3)_2$ ETOH \rightarrow

$$R \xrightarrow{H} C = N-(CH_2)_2-N(CH_3)_2$$

$$R \xrightarrow{H} C = N-(CH_2)_2-N(CH_3)_2$$

Scheme-1

a = 5-((4-methyl phenyl)azo)-N-(N,N-dimethyl ethylamine) salicylaldimineb = 5-((4-nitro phenyl)azo)-N-(N,N-dimethyl ethylamine) salicylaldimine

R	Schiff base
CH ₃	8
NO ₂	b

A solution of 1.00 mmol of 1-amino 2-(N, N) dimethylamine in 10 mL absolute ethanol were added to a solution of 1.00 mmol of each precursor ligand in 10 mL absolute ethanol to give clear yellow or red solutions which were gently refluxed for about 9 h. Then evaporated the solvent and obtained two Schiff-base compounds, and then recrystallized the precipitates from ethanol and ethyl acetate (1:1 v/v). Some physical properties for two asymmetric tridentate 202 and 203 Schiff-base compounds have been shown in Table-1.

TABLE-1 SOME IMPORTANT PHYSICAL PROPERTIES OF SCHIFF-BASE LIGANDS

Formula Compound weight (g/mol ⁻¹)	Colour m.p.		Constant (a)			Yield	Molar conductivity	
		(°C)	С	Н	N	(%)	(DMF)	
C ₁₈ H ₂₂ N ₄ O	310	Yellow	93	69.67 (69.0)	7.9 (6.9)	18.06 (17.8)	45	73.0
(a) C ₁₇ H ₁₉ N ₅ O ₃ (b)	341	Red	182 ^d	59.82 (59.3)	5.57 (5.2)	20.52 (20.1)	55	47.5

^dDecompose

Inspection of the FTIR spectra of precursor ligands and corresponding tridentate Schiff-base ligands reveals that the absorption band of keto group v(CO) (1671-1660 cm⁻¹) disappeared and new absorption bands (1633-1615 cm⁻¹) for a compound and (1624-1620 cm⁻¹) for b compound due to v(C=N) group appeared upon condensation, while the bands due to $\nu(OH)$ group in precursor ligands and corresponding Schiff-base compound lie at about 3450 cm⁻¹.

¹³C NMR and ¹H NMR spectral data (Table-2) for Schiff base compounds in CDCl₃ solvent were taken on a Bruker spectrospin Avance 400 MHz Ultra Shield spectrometer and chemical shifts are indicated in ppm relative to TMS.

1H AND 13C NMR DATA FOR SCHIFF-BASE LIGANDS

		Compounds
	8	b
¹ H NMR (ppm)	14.21 (br. 1H,OH)	14.33 (br, 1H, OH)
	8.65 (s, 1H, iminic)	7.027 (br, 1H, iminic)
	2.19 (s. 6H, aliphatic)	2.24 (s, 6H, aliphatic)
	2.49 (s, 3H, aliphatic)	2.60 (s, 2H, aliphatic)
	2.53 (s, 2H, aliphatic)	3.81 (s, 2H, aliphatic)
	3.70 (s, 2H, aliphatic)	7.04-8.45 (s, 2H, aliphatic)
	6.80-7.96 (d, 5H, aromatic)	
¹³ C NMR (ppm)	(4C, aliphatic)	(3C, aliphatic)
	21.32, 45.519	45.46, 55.79
	52.517, 58.989	59.176
	(10C, aromatic)	(10C, aromatic)
	116.46, 121.35	110.18, 117.43
	122.35, 126.56	119.79, 122.90
	130.18, 131.47	124.64, 127.07
	140.53, 142.518	130.18, 144.37
	150.56, 171.68	148.03, 165.33
	(1C, iminic)	(1C, iminic)
	166.64	155.97

Theoretical background

The configuration interaction method with Sum-Over-State method is used to compute the first hyperpolarizability. In this method, the formula for calculating β is shown below 19:

$$\beta_{\text{total}} = (-(\omega_1 + \omega_2); \, \omega_1, \, \omega_2) = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$

where B is the first hyperpolarizability tensor respectively, which represents the second-order NLO property of the molecule. Donor-acceptor substituted aromatic compounds, as large π -conjugated systems substituted with both strong electron donor and acceptor groups appear most suitable to show high second-order NLO properties²⁰.

Calculation procedure: Calculations using ab-initio method by Cussian 94 package²¹ and semi-empirical methods using MOPAC 7.0 program package²² and the geometry optimization have been carried out at the DFT levels using the three-parameter fit of the exchange correlations potential suggested by $(B3LYP)^{23}$.

The semi-empirical methods used were MINDO/1^{24, 25}, AM1²⁶ and PM3²⁷.

Some important calculated bond lengths, bond angles and the net charge on coordination sites of 202 and 203 Schiff-base compounds (Scheme-2) have been shown in Tables 3 and 4 and also the calculated net charge of some important atoms of Schiff-base compounds have been shown in Scheme-3.

TABLE-3 SOME IMPORTANT CALCULATED BOND LENGTHS (Å) AND BOND ANGLES (°) OF SCHIFF-BASE LIGANDS

non-different research and a feature and a f		Method of calculation							
Bond length (Å)	AMI		PM3		MNDO/I		Ab-initio		
	a	b	8	b	a	b	8	b	
$O_{(1)}$ - $C_{(2)}$	1.365	1.364	1.350	1.348	1.350	1.348	1.364	1.363	
$C_{(2)}$ - $C_{(3)}$	1.407	1.413	1.411	1.414	1.428	1.429	1.410	1.412	
$C_{(3)}$ - $C_{(4)}$	1.471	1.472	1.463	1.463	1.485	1.486	1.470	1.471	
C(4)-N(5)	1.285	1.285	1.296	1.296	1.289	1.289	1.285	1.285	
N ₍₅₎ -C ₍₆₎	1.436	1.436	1.463	1.463	1.464	1.454	1.436	1.436	
C ₍₆₎ -C ₍₇₎	1.544	1.544	1.530	1.530	1.552	1.552	1.543	1.543	
C ₍₇₎ -N ₍₈₎	1.453	1.454	1.492	1.492	1.472	1.472	1.453	1.453	
Bond angle (°)									
$O_{(1)}$ - $C_{(2)}$ - $C_{(3)}$	125.26	125.19	123.97	124.02	125.09	125.15	125.20	125.22	
$C_{(2)}$ - $C_{(3)}$ - $C_{(4)}$	123.45	123.28	122.53	122.47	124.75	124.61	123.40	123.39	
C(3)-C(4)-N(5)	122.06	122.75	119.18	119.07	121.12	120.94	122.11	122.52	
N ₍₅₎ -C ₍₆₎ -C ₍₇₎	120.87	120.91	121.96	121.97	122.22	122.31	120.90	120.91	
C ₍₇₎ -N ₍₈₎ -C ₍₉₎	112.97	112.97	110.48	110.57	112.87	112.92	112.96	112.96	
C ₍₉₎ -N ₍₈₎ -C ₍₁₀₎	113.79	113.65	111.51	111.55	113.46	113.56	113.72	113.69	

Scheme-2

Scheme-3. Calculated net charges for some of the important atoms for a and b Schiff-base compounds

The amount of calculated first order non-linear optical properties (B) for tridentate ligands are shown in Table-4.

Table-4 indicates that monoazo Schiff-base compound (b) shows a good secondorder non-linear optical response, because it has a strong donor and strong acceptor groups in delocalized π -system.

TABLE-4 NON-LINEAR OPTICAL PROPERTIES CALCULATED BY AMI SEMI-EMPIRICAL METHOD FOR MONO AZO SCHIFF-BASE COMPOUNDS

Compound	μ ^a , deby	$\beta^b \mu \times 10^{-30} \text{ esu}$
a	μ _x 2.342	
	μ _y 1.960	-3.422
	$\mu_z - 0.283$	
	μ 3.067	
b	μ _x 4.715	
	μ _y 1.625	17.161
	μ _z 1.816	17.101
	µ 5.308	the second secon

 $^{^{}a}\mu = (\mu_{x}^{2} + \mu_{y}^{2} + \mu_{z}^{2})^{1/2}$ $^{b}\beta = (\beta_{zxx} + \beta_{zyy} + \beta_{zzz})$

Also, the ability of quantum chemistry for predicting coordination sites of Schiff-base ligands can be studied. Table-5 shows the molecular orbital of the anionic from of the tridentate Schiff-base compounds.

From Table-5, one can deduce that the MO more likely to combine with the metal orbital are Ψ_{57} , Ψ_{53} and Ψ_{50} for 202 ligand and Ψ_{53} , Ψ_{56} and Ψ_{59} for 203 tridentate Schiff-base ligand that are located mainly on the $O_{(1)}$, $N_{(5)}$ and $N_{(8)}$ atoms²⁹. The calculated net charges on some of important atoms for a and b tridentate Schiff-base ligands are shown in Scheme-3.

TABLE-5
MOLECULAR ORBITALS OF ANIONIC FORM OF MONO AZO TRIDENTATE
SCHIFF-BASE LIGANDS

		E	Contribution of AO to the MO			
MO	Symmetry	(eV)	O ₍₁₎	N ₍₅₎	N ₍₈₎	
		8	and the second	· · · · · · · · · · · · · · · · · · ·	₿ [*]	
Ψ50	σ	-8.7971	0.0000	0.0000	0.97251	
Ψ51	π	-8.3265	0.0000	0.0000	0.00000	
Ψ'52	π	-7.8233	0.2321	0.0000	0.00000	
Ψ53	σ	-7.2410	0.0000	0.5978	0.00000	
Ψ54	π	-7.0151	0.0000	0.0000	0.00000	
Ψ ₅₅	π	-6.6956	0.0000	0.0000	0.00000	
¥56	π	-6.5350	0.0000	0.0000	0.00000	
Ψ57	σ	-6.2929	0.9594	0.0000	0.00000	
Ψ58	π	-6.1064	0.0000	0.0000	0.00000	
Ψ59	π	-6.0173	0.0021	0.0000	0.00000	
Y ₆₀ (НОМО)) π	-3.9620	0.0047	0.0000	0.00000	
		b				
Ψ53	σ	-14.8913	0.0000	0.0000	0.97380	
¥54	π	-14.8763	0.0000	0.0000	0.00000	
Ψ55	π	-14.8172	0.0000	0.0000	0.00000	
Ψ56	σ	-14.7283	0.9419	0.0000	0.00000	
Ψ57	π	-14.5042	0.0000	0.0000	0.00000	
Ψ58	π	-14.4136	0.0000	0.0000	0.00000	
Ψ59	σ	-14.3651	0.0000	0.4675	0.00000	
Ψ60	π	-13.8996	0.0000	0.0000	0.00000	
Ψ61	π	-13.7369	0.0000	0.0000	0.00000	
Ψ62	π	-13.6370	0.0000	0.0000	0.0000	
Ψ63	π	-13.4980	0.0000	0.0000	0.00000	
Ψ ₆₄ (НОМО) π	-11.7370	0.0000	0.0000	0.00000	

RESULTS AND DISCUSSION

Two Schiff-base compounds presented in this paper were obtained from easily available starting materials in good yields.

The molecular structures and electronic properties of these compounds were investigated by some semi-empirical methods (AM1, PM3, MINDO/1) and by ab-initio calculations.

Materials with non-linear optical properties (NLO) are of great interest for the development of photonic devices and these compounds have strong donor and acceptor groups. So, compound b must show a good response for (NLO) property because the NO₂ group is a good and strong acceptor group and dimethyl group is a good donor group. With the above considerations in mind, we designed and synthesized tridentate Schiff base ligands. However, it seems that the subsistent requires a special attention in designing of the NLO Schiff-base compounds.

According to the calculations (Table-5 and Scheme-3), we can make prediction of the coordination atoms in the structure of a ligand; so tridentate Schiff base ligands are in the range of tridentate unsymmetrical mono-azo Schiff-base ligands and O(1), N(5) and N(8) atoms are coordinated with transition metal ions.

REFERENCES

- 1. E.J. Cambel and S.T. Nguyen, Tetrahedron Lett., 42, 1221 (2001).
- 2. M. Gomez, J. Granell and M. Martinez, Inorg. Chem. Commun., 5, 67 (2002).
- 3. H. Keypour, S. Salehzadeh and R.V. Parish, Molecules, 7, 140 (2002).
- 4. Z. Cimerman, N. Galic and B. Bosner, Anal. Chim. Acta, 343, 145 (1997).
- 5. N. Daneshvar, A.A. Entezami, A.A. Khandar and L.A. Saghatforooh, *Polyhedron*, **22**, 1437 (2003).
- 6. T. Shamsipur, M.H. Mashhadizadeh and I. Sheikhshoaie, J. Anal. At. Spectrom., 18, 1407 (2003).
- 7. A.J. Stemmler and C.T. Burrows, J. Am. Chem. Soc., 121, 6956 (1999).
- 8. P. Klement, F. Stock, H. Elias, H. Paulus, M. Valko and M. Mazur, *Polyhedron*, 18, 3617 (1999).
- 9. R.I. Kureshy, N.H. Kham, S.H.R. Abdi, S.I. Patel, P. Iyer, E. Suresh and P. Dastidar, J. Mol. Catal. A: Chem., 160, 217 (2000).
- 10. I. Aiello, M. Ghedini, F. Neve and D. Pucci, Chem. Mater., 9, 2107 (1997).
- 11. J.D. Bierlein, L.K. Cheng, Y. Wang and W. Tam, Appl. Phys. Lett., 56, 423 (1990).
- 12. H. Nakatani, H. Hayashi and T. Hidaka, Jpn. J. Appl. Phys., 31, 1802 (1992).
- 13. K. Wu, P. Lin and X. Chem, Laser Chem., 18, 193 (2000).
- 14. K. Wu, X. Chem, J.G. Snijesr, R.S.C. Lin and B. Zhuang, J. Crystal Growth, 237–239, 663 (2002).
- 15. Z. Li, K. Wu, G. Su and Y. He, Optical Mater., 20, 295 (2002).
- 16. J.D. Bierlein, L.K. Cheng, Y. Wang and W. Tam, Appl. Phys. Lett., 56, 423 (1990).
- 17. M. Jalali-Heravi, A.A. Khandar and I. Sheiksshoaie, Spectrochim. Acta, 55A, 2537 (1999).
- 18. A.I. Vogel, A Text-book of Practical Organic Chemistry, Longman New York (1965).
- 19. J.A. Morrell and A.C. Abrecht, Chem. Phys. Lett., 64, 46 (1979).
- 20. L.T. Cheng, W. Tam, S.H. Stevenson, G.H. Meredith, G. Rikken and S. Marder, *J. Phys. Chem.*, 95, 10631 (1991).
- 21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R.

Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stevfanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayalam, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. DeFrees, J. Baker, J.J.P. Stewart, M. Head-Gordon, C. Gonzalez and J.A. Pople, GAUSSIAN 94, Gaussian Inc., Pittsburgh, PA (1995).

- 22. J.J.P. Stewart, MOPAC, A Semi-empirical Molecular Orbital Program, in QC PE, 455, 6, 1990 (1983).
- 23. T.H. Dunning and P. Hay, in: H.F. Schaefer III (Ed.), J. Modern Theoretical Chemistry, Plenum, New York (1974).
- 24. M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4407 (1977).
- 25. M.J.S. Dewar and M.L. Mckee, J. Am. Chem. Soc., 99, 5231 (1977).
- 26. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 27. J.J.P. Stewart, J. Comput. Chem., 10, 209 (1989).
- 28. ____, J. Comput. Chem., 10, 221 (1981).
- 29. J.M. Salas, M.A. Romero and M.P. Sanches, Polyhedron, 11, 2247 (1992).

(Received: 30 June 2004; Accepted: 22 August 2005)

AJC-4358

ANZMAG 2006

12-15 FEBRUARY 2006

MURRAMARANG, NATIONAL PARK, AUSTRALIA

Contact:

Dr. Gottfried Otting

Research School of Chemistry

Building 35, RSC Building

The Australian National University, ACT 0200 Australia

E-mail: Gottfried.otting@anu.edu.au Web: www.anzmag.com.au/anzmag06