Spectral, Thermal and Biological Studies of Mn(II) and Fe(II) Complexes of Schiff Base derived from *p*-Dimethylaminobenzaldehyde and Anthranilic Acid

B.H. MEHTA* and A.S. SALUNKE

Department of Chemistry, University of Mumbai, Vidyanagari, Kalina, Santacruz (E), Mumbai-400 098, India

The solid complexes of Mn(II) and Fe(II) with tridentate Schiff base, p-dimethylaminobenzylidene anthranilic acid (PDBAA) derived from p-dimethyl aminobenzaldehyde and anthranilic acid have been synthesized and characterized by elemental analysis, molar conductivity, IR, electronic spectra, magnetic susceptibility, X-ray diffraction studies and by thermal studies. From the analytical and spectral data, the stoichiometry of the complexes has been found to be 1:1 (metal:ligand). The metal chelates have a general formula $[M(PDBAA)\cdot(H_2O)_3]$ (M = Mn(II) or Fe(II). Electronic absorption data suggest octahedral geometry for these metals chelates. IR spectral data suggest that the ligand (PDBAA) behaves as a monobasic tridentate ligand with N:N:O donor sequence towards metal ions. Magnetic susceptibility measurement indicates paramagnetic behaviour for both the complexes. From electronic spectral data, various ligand field parameters such as Dq, B', B and LFSE have been calculated for both the complexes, which are in good agreement with that of proposed geometries of the complexes. X-ray diffraction powder pattern indicates that these chelates are crystalline and crystallize with monoclinic system. The antifungal and antibacterial activities of the ligand and the complexes have been screened against several fungi and bacteria.

Key Words: Transition metal, Schiff base, Characterization.

INTRODUCTION

The coordination behaviour and preparative techniques of Schiff bases have received much attention in recent years 1-3, because of their preparative accessibility, structural variety, varied denticity and subtle steric and electronic control on their framework leading to complexes of different nuclearities in variable oxidation states of the metal ions. Mononuclear complexes derived from Schiff bases proved to be valuable catalysts in various organic reactions, especially in enantioselective transformation⁴. It has been acknowledged that the primary event in mammalian vision is a light-initiated *cis*-to-*trans* isomerization of the retinal chromophore bond, *via* a protonated Schiff base, to a lysine residue in the opsin apoprotein^{5, 6}. Different Schiff bases and their metal complexes find applications

as antituberculosis⁷, anticonvulsant⁸ and as potential anthelmintic⁹ agents. A Schiff base derived from p-dimethylaminobenzaldehyde and anthranilic acid was reported 10 to possess such biological activity. In continuation of our earlier work 11 here we are reporting the synthesis, characterization and biological activity of manganese(II) and iron(II) complexes of Schiff base p-dimethylaminobenzaldehyde anthranilic acid (PDBAA) in the present communication.

EXPERIMENTAL

Metal salts used for synthetic and analytical work were AR/LR grade. All reagents and solvents used were purified by standard method and dried before use. The ligand PDBAA is synthesized by the same process as reported earlier 11.

Synthesis of metal complexes $[M(PDBAA) \cdot (H_2O)_3]$ (M = Mn(II) or Fe(II)

1% (w/v) Schif base solution in hot distilled water was prepared. To this solution, metal salt solution (1 mg/mL) prepared in distilled water was added slowly with continuous stirring. The mixture was heated for 5 min on a burner: no precipitate was obtained. Then the mixture was cooled to room temperature and pH was raised with alcoholic ammonia (for Mn(II) complex pH was raised to 8.0 and for Fe(II) complex pH was raised to 5.0). The metal complexes were separated out under these conditions. The precipitate was suction filtered, washed with distilled water and final wash was given with absolute ethanol. Each metal complex was dried under vacuum at room temperature and recrystallised from acetic acid.

Elemental analyses of metal complexes were determined by the method as reported in literature 12. Solubility of the metal complexes was investigated in various polar and non-polar solvents. Molar conductivity was measured in DMSO (10⁻³ M) solution using Toshniwal TSM-15 conductometer. Magnetic susceptibility measurements were made at room temperature on Gouy balance using Hg[Co(SCN)₄] as calibrant. Electronic absorption spectra were recorded on a Shimadzu UV-2100 spectrophotometer, while IR spectra (KBr pellets) were recorded on a Shimadzu FTIR-4200 spectrometer in the range 4000-400 cm⁻¹. X-ray diffractograms were recorded on X-ray diffractometer supplied by M/s Philips, Holland. TG and DT analyses of metal complexes were carried out in nitrogen atmosphere in the range of 25-900°C on Shimadzu DTG-50 with a heating rate 10°C min⁻¹ using alumina as a standard.

Microbial activities

All metal complexes were screened against gram positive bacteria (Staphylococcus aureus), gram negative bacteria (Escherichia coli) at various concentrations (0.125-1.0 mg/mL) in DMSO as a system by agar plate method using echinocandin as a control.

The liquid culture was used as an inoculum. This inoculum was added to Sabouraud dextrose agar. This was then poured into petri-dishes and allowed to 1328 Mehta et al. Asian J. Chem.

solidify. Then holes of 6 mm diameter were punched carefully using a sterile cork-borer and these were completely filled with the test solutions. The plates were incubated for 24 h at 37°C. Then zones of inhibition were recorded against the desired micro-organisms.

RESULTS AND DISCUSSION

The analytical data of the complexes and their magnetic moment values are given in Table-1 whereas ligand field parameters are given in Table-2. The complexes are coloured solids, found to be stable at room temperature. However, these decompose at temperatures higher than 280°C. The metal complexes are soluble in DMSO, while they are insoluble in methanol, ethanol, chloroform, carbon tetrachloide, acetone, ethyl acetate, petroleum ether, diethyl ether, 1,4-dioxane, DMF, etc. The molar conductivity values of 10⁻³ M solutions of the complexes (0.84–0.91 s cm² mol⁻¹) in DMSO at room termperature show non-electrolytic nature of the complexes¹³.

The IR spectra of both the metal complexes show broad band of medium intensity at 3200 cm⁻¹ which have been assigned to the v(OH) mode of coordinated water molecule. The new peak at ca. 860 cm⁻¹ suggests the presence of coordinated water molecule 14 which is further corroborated by TG and DT analyses. The infrared spectrum of the ligand shows a broad band at 2800 cm⁻¹ which is a characteristic of v(OH) stretching of carboxylic 15 group. In the spectra of metal complexes the broad band disappears indicating deprotonation of the ligand and involvement of carboxylic oxygen atom in bonding with metal ion. The ligand shows characteristic band at 1680 cm⁻¹ which can be assigned to v(C=O) mode of carboxylic group. This band is shifted to 1600 cm⁻¹ in the corresponding spectra of metal complexes. Another band appearing at 1615 cm⁻¹ in the spectrum of ligand is considerably lowered to 1540 cm⁻¹ in the corresponding spectrum of metal complex indicating involvement of the azomethine nitrogen atom during chelation¹⁶. The weak band appearing at 518 and $420 \, \text{cm}^{-1}$ can be assigned to v(M-N) and v(M-O) stretching vibrations, respectively 17, 18.

The electronic absorption spectrum of ligand shows three high intensity bands lying at 29499, 40650 and 46083 cm⁻¹ assigned to $n \to \pi^*$, $\pi \to \pi^*$ and $\sigma \to \sigma^*$ transitions respectively¹⁹.

The electronic absorption spectrum of Mn(II) complex indicates the absorption bands at 18382, 29940 and 38610 cm^{-1} which can be assigned to the transitions $^6A_{1g} \rightarrow ^4T_{1g}$, $^6A_{1g} \rightarrow ^4T_{2g}$ and charge transfer band respectively 20 . The Mn(II) complex exhibits room temperature magnetic moment value at 5.92 B.M. which is the same as spin-only value of 5.92 B.M. expected for an s = 5/2 system. The above magnetic moment value is indicative of the presence of $^6A_{1g}$ ground state associated with an octahedral 21 structure.

The Fe(II) complex exhibits three main absorption bands around 20000, 29499 and 38610 cm⁻¹ which can be assigned to the transitions ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$,

TABLE-1 ELEMENTAL ANALYSIS, PHYSICAL AND SPECTROSCOPIC DATA OF THE SCHIFF BASE AND ITS Mn(II) AND Fe(II) COMPLEXES

			No.		todas	-ound (C	Found (Calcd.), %				IR (cm ⁻¹)			
Conpound (Colour)	m.f. (m.w.)	Yiel % (m.p., °C)	Yiel % conductivity μeπ (m.p., °C) (s cm² mol ⁻¹)	Heff (B.M.)	U		Z	2	v(0—H)	v(O—H) v(O—H) v(C=O) v(C=N) v(M=N) v(M—O) —COOH Coordinated H2O molecule	v(C=0)	v(C=N)	v(M==N)	v(M0)
Ligand PDBAA (Orange)	C16H16N2O2 (268)	(186)	1	Basses	70.19 5.18 9.72 (71.64) (5.97) (10.45)	70.19 5.18 9.72 71.64) (5.97) (10.45	9.72 (10.45)	The state of the s	2800	manufer, special manufer, and the special spec	1680	1615		point or a second control of the second cont
[Mn(PDBAA)(H ₂ O) ₃] C ₁₆ H ₂₁ N ₂ O ₅ Mn (Light brown) (375.94)	C ₁₆ H ₂₁ N ₂ O ₅ Mn (375.94)	63 (>300)	0.84	5.92	50.97	5.51 (5.58)	50.97 5.51 7.38 14.56 (51.07) (5.58) (7.45) (14.61)	14.56 (14.61)	1	3300	1615	1590	8	420
[Fe(PDBAAXH ₂ O) ₃] C ₁₆ H ₂₁ N ₂ O ₅ Fe (Dark brown) (376.85)	C ₁₆ H ₂₁ N ₂ O ₅ Fe (376.85)	(>300)	0.91	20.4	50.92 (50.95)	5.53	50.92 5.53 7.38 14.80 (50.95) (5.57) (7.43) (14.82)	14.80	1	3300	9	1590	8	420

 $^6A_{1g} \rightarrow ^4E_g$ and charge transfer band respectively²². The room temperature magnetic measurements of Fe(II) complex exhibit a magnetic moment of 4.82 B.M. which suggests the presence of four unpaired electrons with high-spin Fe(II) complex^{23, 24}.

The ligand field parameters like ligand splitting energy (10 Dq), Racah interelectronic repulsion parameter (B), covalent factor (β) and ligand field stabilization energy (LFSE) has been calculated. These values are compiled in Table-2. The B and β values have been calculated following standard equations^{25, 26}. The B-values are lower than the free ion values, thereby indicating the orbital overlap and delocalization of *d*-orbitals. The β -values obtained are less than unity suggesting considerable amount of covalent character of the metal-ligand bonds²⁵.

TABLE-2
ELECTRONIC SPECTRAL DATA AND LIGAND FIELD PARAMETERS OF THE COMPLEXES

	Electronic			Ligand field parameters					
Compound	absorbance (cm^{-1}) $(\epsilon \times 10^4) dm^3$ $mol^{-1} cm^{-1}$	Band Assignments	Dq (cm ⁻¹)	V2/V1	B (cm ⁻¹)	β	LFSE (kcal mol ⁻¹)		
PDBAA	29499 (2.1) 40650 (1.4) 46083 (3.1)	$n \to \pi^*$ $\pi \to \pi^*$ $\sigma \to \sigma^*$		-	— to blasso-	distribution	makada kana kana kana kana kana kana kana		
[Mn(PDBAA)(H ₂ O) ₃]	18382 (0.01) 29940 (0.92) 38610 (0.88)	$^6A_{1g} \rightarrow ^4T_{1g}$ $^6A_{1g} \rightarrow ^4T_{2g}$ Charge transfer	18382	1.62	894	0.93	52.66		
[Fe(PDBAA)(H ₂ O) ₃]	20000 (0.01) 29499 (2.05) 38610 (1.66)	$^{6}A_{1g} \rightarrow ^{4}T_{1g}$ $^{6}A_{1g} \rightarrow ^{4}E_{g}$ Charge transfer	20000	1.48	541	0.51	57.30		

Thermal studies (TG and DTA) of the complexes revealed loss of three moles of coordinated water per mole of complex in the case of Mn(II) and Fe(II) complexes. The loss of coordinated water in both the complexes is a single step process, indicated by sharp exothermic peak. The removal of coordinated water molecule from the metal complexes ranges around 280°C. The TGA curve shows sharp decrease at around 280°C suggesting slow but steady decomposition of the compound. The decomposition continues up to the temperature 700–800°C and the horizontal nature of the curve indicates the presence of thermally stable residual metal oxide. The thermal analysis data of both the complexes are summarized in Table-3.

The X-ray diffraction pattern for both the metal complexes has been determined between 20 range from 5-80° and data has been summarized in Tables 4 and 5. The major refluxes have been indexed by using computer software. The data indicate the monoclinic crystal systems for both the complexes.

Biological Activity

The ligand and its metal complexes were screened for antibacterial and

antifungal activities by agar plate method using echinocandin as control. The antibacterial activity of the compounds was tested against *E. coli* (gram-negative) and *Staphylococcus aureus* (gram-positive). The antifungal activity of the compounds was tested against *Candida albicans*, *Candida krusei*, *Candida glabrata* and *Aspergillus fumigatus*. The concentration used for testing was 0.125–1.0 mg/mL in DMSO.

TABLE-3
THERMAL DATA OF METAL COMPLEXES

	Temperature	Thermal analysis, Obs (
[Compound] m.f. (m. w.)	at which the coordinated water was removed (°C)	Coordinated Organic water content	0,,,,	Nature of DTA curve (inference)
[Mn(PDBAA)(H ₂ O) ₃] C ₁₆ H ₂₁ N ₂ O ₅ Mn (375.94)	282	13.83 67.23 (14.36) (66.77)	MnO 18.94 (18.87)	Exotherm (decomposition)
[Fe(PDBAA)(H ₂ O) ₃] C ₁₆ H ₂₁ N ₂ O ₅ Fe (376.85)	280	14.10 66.73 (14.33) (66.60		Exotherm (decomposition)

The results (Table-6) reveal that the ligand is inactive towards all strains. Both the metal complexes are fungitoxic in nature. Fe(II) complex was found to be more active than Mn(II) metal complex for all fungal strains. In general, metal complexes are more active than their parent ligand and hence may serve as vehicles for activation of the ligand as principal cytotoxic^{27, 28} species.

Based on the foregoing observations from the molecular weight determinations, molar conductance, analytical, magnetic moment, spectral data and thermal analyses it is suggested that the Mn(II) and Fe(II) complexes exhibit monomeric octahedral configuration. X-ray diffraction studies suggest monoclinic crystal system and space group $P_{2/m}$ for all the metal complexes. Metal complexes are more active than their parent ligand. Tentative structures of the complexes are given in Fig. 1.

$$H_3C$$
 H_3C
 H_2
 H_2O
 H_2O

M = Mn(II) or Fe(II)[Octahedral].

TABLE-4
CELL DATA AND CRYSTAL LATTICE PARAMETERS FOR [Mn(PDBAA)-(H₂O)₃]

a (Å) = 17.2468 \pm 0.0268, b (Å) = 22.6517 \pm 0.0601, c (Å) = 22.7037 \pm 0.0375, Standard deviation: 0.69%, α = 90°, β = 84.23°, γ = 90°, Volume (Å) = 2326.28, d_{cal} = 1.0731 g/cm³, d_{obs} = 1.0737 g/cm³, Z = 4, Crystal system = Monoclinic, Space group = P2/m, % Porosity = 0.06

119 0.00			A CONTRACTOR OF THE PROPERTY O		
I/I _o	d_{obs}	d_{cal}	h	k	·
100	13.5963	13.5798	1	0	1
2	6.7458	6.8442	2	1	3
90	4.5349	4.5265	3	3	4
31	4.4503	4.4463	2	4	3
28	3.5335	3.5358	3	5	4
45	3.4409	3.4221	4	2	6
15	3.3919	3.3773	3	3	5
2	3.1964	3.2021	3	5	3
2	3.0857	3.0820	1	3	3
2	2.8268	2.8319	3	g sage	2
5	2.7334	2.7330	6		7
7	2.6272	2.6325	3	7	3
7	2.5159	2.5188	4	0	7
4	2.4604	2.4539	5	6	7
6	2.3900	2.3894	4	3	7
2	2.2653	2.2647	7	2	8
1	2.2279	2.2244	6	6	7
10	2.1651	2.1671	5	8	6
6	2.1292	2.1293	6	7	8
4	2.0671	2.0697	8	3	10
7	2.0228	2.0247	6	5	6
3	1.9838	1.9794	8		9
2	1.9644	1.9591	7	7	9
3	1.9047	1.9060	2	10	1
3	1.8737	1.8718	5	8	8
2	1.7813	1.7804	4	9	7
3	1.7194	1.7194	1	8	4
3	1.6918	1.6933	8	7	9
4	1.6472	1.6463	2	1	-1
2	1.5575	1.5568	3	7	7

TABLE-5 CELL DATA AND CRYSTAL LATTICE PARAMETERS FOR [Fe(PDBAA)-(H2O)3]

a (Å) = 17.2233 \pm 0.0358, b (Å) = 22.8264 \pm 0.0933, c (Å) = 22.6272 \pm 0.0532, Standard deviation: 0.73%, α = 90°, β = 82.33°, γ = 90°, Volume (Å)³ = 2318.01, d_{cal} = 1.0795 g/cm³, d_{obs} = 1.0816 g/cm³, Z = 4, Crystal system = Monoclinic, Space group = P2/m, % Porosity = 0.19y

IЛo	d _{obs}	d_{cal}	h	k	*
96	13.5951	13.5546	1	0	1
100	13.4310	13.5546	1	0	1
7	7.2980	7.2993	•	0	2
42	4.5637	4.6553	and on the	5	0
27	4.3816	4.3652	2	4	2
28	4.3140	4.2996	4	0	5 ×
3	3.8746	3.8849	3	3	3
14	3.4814	3.4641	2		1
23	3.3847	3.3780	5	0	6
3	2.7104	2.7154	5	5	6
4	2.5088	2.5101	1	6	3
4	2.4475	2.4487	5	4	5
4	2.1368	2.1387	7	3	10
5	1.6433	1.6453	4	.6	8
1	1.5282	1.5293	2	6	6
8	1.4421	1.4417	4	9	2

TABLE-6 ANTIFUNGAL AND ANTIBACTERIAL STUDIES

Compound	Conc.		Zone size in mm							
Compound	(mg/mL) C. albicans C. krusei C. glabrata A. furnigtus S. aureus E. c									
	0.125	A CONTROLLED STATE OF THE PROPERTY OF THE PROP		tinglings.	Olimbia in vir amongorom mengagapata tahuluk kemenggapa negapatan . Valifika memenan	eth an delphin in deligen meganiga kalikalaka kan maka anama ana amang gogjalpa Indodesia kang kang anama ana anama kang gogjalpa				
PDBAA	0.250	magine elementar			-	~100cmp.40145.	********			
FUDAA	0.500			****	· · · · · · · · · · · · · · · · · · ·		distribution			
	1.000			-	***Pleasobury		-december -			
	0.125	13	14	10		· · · · · · · · · · · · · · · · · · ·	energosyn			
[Mn(PDBAA)(H ₂ O) ₃]	0.250	16	14	10	11	**************************************				
[MIII(FDDAA)(I12O)3]	0.500	16	14	10	11	· · · · · · · · · · · · · · · · · · ·	- MARINE			
	1.000	16	15	11	12	· compliance	10			
	0.125	15	14	12	11	CONTROL OF THE CONTROL OF T	~~~			
(Fa/DDDAA)(H.O.)	0.250	15	16	12	11	- maninon-				
[Fe(PDBAA)(H ₂ O) ₃]	0.500	16	16	12	12	- MORROWANIAN	-Photos			
	1.000	16	16	14	12		-			

REFERENCES

- 1. A.D. Garnovskii, A.L. Nivorozhkin and V.I. Minkin, Coord. Chem. Rev., 126, 1 (1993).
- 2. T.K. Karmakar, S.K. Chandra, G. Mostafa, T.-H. Lu, J. Ribas and B.K. Ghosh, Chem. Commun., 54, 2364 (2002).
- 3. M. Mirza-Aghayan, M. Ghassemzadeh, M. Hoseini and M. Bolourtchain, Syn. Commun., 33, 521 (2003).
- 4. L. Salmon, P. Theury and M. Ephritikhine, J. Chem. Soc., Dalton Trans., 10, 1635 (2004).
- 5. H. Kandori, Y. Shichida and T. Yoshizawa, Biochem., 66, 1197 (2001).
- 6. K. Nakanishi, Chem. Pharm. Bull., 48, 1399 (2000).
- 7. A. Kumar, B.P. Jaju and J.N. Sinha, Indian J. Pharm. Sci., 52, 257 (1990).
- 8. S. Ryusaku, Ann. Rept. Research. Inst. Tuber C., Kanazawa Univ., 11, 1 (1953).
- 9. J.S. Shukla, R. Rastogi and S. Saxena, Indian J. Chem., 19B, 84 (1980).
- 10. J.S. Shukla, M. Singh and R.Rastogi, Indian J. Chem., 22B, 306 (1983).
- 11. B.H. Mehta and A.S. Salunke, Asian J. Chem., 17, 1103 (2005).
- 12. A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, 3rd Edn., ELBS, Longman, London (1969).
- 13. L. Mishra, K. Bindu and S. Bhattacarya, Indian J. Chem., 43A, 315 (2004).
- C.N.R. Rao and J.R. Ferraro, Spectroscopy in Inorganic Chemistry, Vol. 1, Acadamic Press, New York, p. 149 (1970).
- Y.R. Sharma and O.P. Vig, Elementary Organic Spectroscopy, S. Chand & Company Ltd., New Delhi, p. 117 (2001).
- 16. P.S. Mane, S.G. Shirodkar, B.R. Arbad and T.K. Chondekar, *Indian J. Chem.*, 40A, 648 (2001).
- 17. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, p. 166 (1972).
- 18. L.N. Sharda and M.C. Ganorkar, Indian J. Chem., 27A, 163 (1988).
- 19. R. Thomas and G. Parameswaran, J. Indian Chem. Soc., 69, 117 (1992).
- 20. B.B. Mahapatra, M.K. Raval and B.K. Patel, Indian J. Chem., 28A, 434 (1989).
- 21. A. Syamal and B.K. Gupta, Indian J. Chem., 34A, 495 (1995).
- 22. I.U. Khan, S.K. Srivastava and S.C. Srivastava, Indian J. Chem., 26A, 238 (1987).
- 23. L.N. Sharda and M.C. Ganorkar, Indian J. Chem., 27A, 542 (1988).
- 24. N.R. Rao, P.V. Rao, V.J. Tyagaraju and M.C. Ganorkar, Indian J. Chem., 24A, 877 (1985).
- 25. B.B. Mahapatra and D. Panda, Indian J. Chem., 23A, 256 (1984).
- J.E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry, 4th Edn., Addison-Wesley, New York, p. 446 (1983).
- 27. J.T. Makode and A.S. Aswar, Indian J. Chem., 43A, 2120 (2004).
- 28. D.H. Petering, in: H. Sigel (Ed.), Metal Ions in Biological System, Vol. II, Marcel-Dekker (1973).