Apparent Molal Volumes of Aqueous Ammonium Salts-Glucose Solution HANUMAN SINGH*, K.P. SINGH, A.K.S. BHONSLA and G.S. UPADHYAY† Department of Chemistry, S.P. Jain College, Sasaram, India court asour pears bing 10°0% is believe and provinced in Present paper reports the mean apparent molal volumes of aqueous NH₄X (X = Cl, Br, NO₃)-glucose solution directly determined at 40°C from density measurements. The modified Young's rule has been found to be applicable to these solutions. The deviations from the modified Young's rule have been taken as the excess apparent molal volumes of mixing NH₄X and glucose solutions. Key Words: Molal volumes, Ammonium salts, Glucose solution. ### INTRODUCTION Thermodynamical treatment of multicomponent solutions has been given considerable attention for the last few years $^{1-4}$. Many volume studies have been made on solutions containing several electrolytes. The volume of mixing $^{5-9}$ electrolyte solutions constitutes an excellent way for the study of ion-ion and ion-solvent interactions. The Young's rule 10 provides the way to calculate mean apparent molal volume of ternary solutions. The Young's rule holds good for electrolytic solutions. Some workers $^{11, 12}$ have extended such studies to electrolytic-non-electrolytic solutions, which are important and useful due to the deficiency of ϕ_V data for these solutions. The present study has been carried out in order to test the validity of the modified Young's rule 10 for aqueous NH₄X-glucose solutions, which is an electrolyte-non-electrolyte system, and to study the change of ϕ_V on addition of glucose to the system. ### EXPERIMENTAL prelifer interestablished peers res- The chemicals NH₄Cl, NH₄Br, NH₄NO₃ and glucose were of either BDH or E. Merck quality. They were used without any further purification. Water used as a solvent was obtained by distillation of distilled water over a little KMnO₄ and NaOH until its specific conductance was of the order of 10⁻⁶ mho cm⁻¹. The densities were measured with the help of a double capillary pyknometer and an analytical balance with an accuracy of 0.0001 g. The temperature of the solutions was controlled in a water-thermostat. [†]Department of Chemistry, Magadh University, Bodh Gaya, India. ## RESULTS AND DISCUSSION The densities of aqueous solutions containing 0.05, 0.10, 0.15 or 0.20 M NH_4X and various molalities of glucose were measured at 40°C and their mean apparent molal volumes, ϕ_V , were calculated from the equation 1 $$\phi_{V} = \frac{1000(d_{0} - d)}{d_{0}dm_{T}} + \frac{M_{T}}{d}$$ (1) where d_0 and d are the densities of pure water and the solution respectively, m_T is the molality ($m_T = \Sigma m_i$) and M_T is the mean molecular weight of the solutes, which is determined by $M_T = \Sigma Y_i M_i$, where M_i is the molecular weight of component i and Y_i is the molal weighing factor defined as $Y_i = m_i/m_T$, m_i being the molality of component i and m_T being the total molality. The mean apparent molal volume ϕ_V of the solutions can also be calculated from the Young's rule which, for a ternary system, is expressed as $$\phi_{V} = \sum_{i=1}^{2} Y_{i} \phi_{V}(i) + \frac{\Delta V}{m_{T}}$$ (2) where Y_i is the molal weighing factor as described earlier, $\phi_V(i)$ is the apparent molal volume for the electrolytic component i in water at the same ionic strength as the total mixture and ΔV is the increase in volume on mixing and m_T is the total molality of the solution. $\Delta V/m_T$ is called the excess apparent molal volume of mixing. In Young's rule expressed by eqn. (2), the term $\Delta V/m_T$ is ignored¹⁰. Thus the modified Young's rule for a ternary system is $$\phi_V = Y_1 \phi_1 + Y_2 \phi_2 \tag{3}$$ The modified Young's rule for the present study may be written as $$\phi_{V} (cal) = Y_{NH_{4}X} \phi_{V}(NH_{4}X) + Y_{glucose} \phi_{V}(glucose)$$ (4) where $\phi_V(\text{cal})$ is the mean apparent molal volume calculated from pure water molal volume data; $Y_{\text{NH}_4X} = m_{\text{NH}_4X}/m_T$ and $Y_{\text{glucose}} = m_{\text{glucose}}/m_T$, $\phi_V(\text{NH}_4X)$ is the apparent molal volume of NH₄X in pure water at ionic strength of the solution, i.e., m_{NH_4X} , and ϕ_V (glucose) is the apparent molal volume of glucose in pure water at the total molality m_T of the solution. The difference between $\phi_V(obs)$, i.e., mean apparent molal volume of the solution directly determined from eqn. (1) and $\phi_V(cal)$ calculated from the modified Young's rule as represented in eqn. (4) is considered as the excess apparent molal volume, $\phi_V(excess)$, of mixing aqueous solutions of NH₄X and glucose. Thus $\phi_V(excess)$ may be expressed as: $$\phi_{V}(excess) = \phi_{V}(obs) - \phi_{V}(cal)$$ (5) where $$\phi_V(\text{excess}) = \frac{\Delta V}{m_T}$$ (6) $\phi_V(excess)$ is the deviation from Young's rule approximation. The experimental values of density, $\phi_V(obs)$, $\phi_V(cal)$ and $\phi_V(excess)$ have been tabulated in Tables 1–3 for aqueous NH₄Cl-glucose, NH₄Br-glucose and NH₄NO₃-glucose solutions respectively as a function of glucose concentration. It is evident from Tables 1-3 that the value of excess apparent molal volume of mixing, $\phi_V(\text{excess})$, is not very high. Therefore the modified Young's rule is applicable to aqueous NH₄X-glucose solutions. TABLE-I DATA FOR AQUEOUS NH₄CI-GLUCOSE SOLUTIONS AT 40°C | | ATTENDED TO THE OWNER OF OWN | DY 650 - 7/2-50 | | | | |--|--|----------------------------------|---|---------------------------------------|--| | M NH ₄ Cl
(mol L ⁻¹) | mglucose
(mol kg ⁻¹) | Density
(g mL ⁻¹) | φ _V (obs)
(mL mol ⁻¹) | $\phi_V(cal)$ (mL mol ⁻¹) | φ _V (excess)
(mL mol ⁻¹) | | A CONTRACTOR OF THE PROPERTY O | 0.07621 | 0.9987 | 78.08 | 79.89 | -1.81 | | 0.05 M | 0.10190 | 1.0004 | 83.92 | 85.17 | -1.25 | | | 0.15371 | 4:0038 | 91.23 | ct 91.88 | -0.65 | | | 0.20613 | 1.0072 | 95.63 | 95.97 | -0.34 | | | 0.10190 | 1.0016 | 70.29 | 73.27 | -2.98 | | 0.10 M | 0.20613 | 1.0083 | 84.95 | 86.57 | -1.62 | | 0.10 1/1 | 0.25916 | 1.0116 | 89.29 | 90.65 | -1.36 | | | 0.31284 | 1.0145 | 93.56 | 94.14 | -0.58 | | | 0.07621 | 1.0012 | 55.60 | 56.75 | -1.15 | | 0.20 M | 0.15371 | 1.0066 | 67.05 | 68.97 | -1.92 | | | 0.20613 | 1.0107 | 71.08 | 74.75 | -3.67 | | | 0.31284 | 1.0161 | 82.39 | 83.26 | -0.87 | TABLE-2 DATA FOR AQUEOUS NH₄Br-GLUCOSE SOLUTIONS AT 40°C | M NH ₄ Br
(mol L ⁻¹) | m _{glucose}
(mol kg ⁻¹) | Density
(g mL ⁻¹) | $\phi_V(\text{obs})$ (mL mol ⁻¹) | $\phi_V(cal)$ (mL mol ⁻¹) | $\phi_V(\text{excess})$
(mL mol^{-1}) | |--|---|----------------------------------|--|---------------------------------------|---| | 0.10 M | 0.08903 | 1.0041 | 73.08 | 75.94 | -2.86 | | | 0.11479 | 1.0059 | 77.25 | 80.33 | -3.08 | | | 0.23257 | 1.0134 | 90.01 | 91.74 | -1.73 | | | 0.35351 | 1.0198 | 98.73 | 98.35 | +0.38 | | 0.15 M | 0.08903 | 1.0064 | 68.53 | 70.33 | -1.80 | | | 0.17984 | 1.0127 | 79.24 | 82.08 | -2.84 | | | 0.27253 | 1.0179 | 88.13 | 89.29 | -1.16 | | | 0.36717 | 1.0236 | 92.94 | 94.12 | -1.18 | | | 0.07621 | 1.0076 | 63.97 | 64.82 | -0.85 | | 0.20 M | 0.15371 | 1.0131 | 73.08 | 75.31 | -2.23 | | | 0.31284 | 1.0227 | 86.05 | 87.41 | -1.36 | | | 0.42219 | 1.0280 | 92.97 | 92.62 | +0.35 | DATA FOR AQUEOUS NH4NO3 - GLUCOSE SOLUTIONS AT 40°C | M NH ₄ NO ₃ (mol L ⁻¹) | mglucose
(mol kg ⁻¹) | Density
(g mL ⁻¹) | φ _V (obs)
(mL mol ⁻¹) | $\phi_V(cal)$ (mL mol ⁻¹) | φ _V (excess)
(mL mol ⁻¹) | |--|-------------------------------------|----------------------------------|---|---------------------------------------|--| | | 0.10190 | 1.0029 | 76.95 | 79.82 | -2.87 | | 0.10 M | 0.15371 | 1.0061 | 84.92 | 86.37 | -1.45 | | | 0.20613 | 1.0094 | 89.93 | 91.24 | -1.31 | | Tigas pojepaljeti
Tigas pojepaljeti | 0.31284 | 1.0162 | 95.71 | 96.67 | -0.96 | | | 0.06432 | 1.0014 | 66.87 | 67.66 | -0.79 | | 01614 | 0.12772 | 1.0058 | 76.31 | 77.64 | -1.33 | | 0.15 M | 0.25916 | 1.0134 | 89.96 | 89.51 | +0.45 | | e de la companya l | 0.42219 | 1.0226 | 98.06 | 96.81 | +1.25 | | The state of s | 0.07621 | 1.0037 | 65.64 | 66.72 | -1.08 | | 0.20 M | 0.15371 | 1.0088 | 75.52 | 76.80 | -1.28 | | | 0.31284 | 1.0179 | 88.94 | 88.69 | +0.25 | | | 0.42219 | 1.0235 | 94.94 | 93.46 | +1.48 | Fig. 1. Apparent molal volume of aqueous NH₄Cl-glucose solutions at 40°C Fig. 2. Apparent molal volume of aqueous NH₄Br-glucose solution at 40°C Fig. 3. Apparent molal volume of aqueous NH₄NO₃-glucose solutions at 40°C The mean apparent molai volume ϕ_V (obs) of aqueous NH₄X-glucose solutions have been plotted vs. $\sqrt{m_T}$. The plots are shown in Figs. 1-3 for aqueous NH₄Cl-glucose, NH₄Br-glucose and NH₄NO₃-glucose solutions respectively. The three curves in Fig. 1 represent the variation of ϕ_V with varying concentration of glucose in 0.05M, 0.10M and 0.20M NH₄Cl solutions. The bottom points of each curve represent the respective ϕ_V value of aqueous NH₄Cl-glucose solution extrapolated to m_{glucose} = 0 and these were determined from the densities of 0.05M, 0.10M and 0.20M NH₄Cl in water before the addition of glucose. ϕ_V vs. $\sqrt{m_T}$ plots of NH₄Br-glucose and NH₄NO₃-glucose aqueous solutions are shown in Figs. 2 and 3 respectively which are similar to those of NH₄Cl-glucose aqueous solutions. The extrapolation of the line joining the bottom points to zero concentration in Figs. 1-3 gives ϕ_V^0 of NH₄Cl, NH₄Br and NH₄NO₃ respectively which are in good agreement with the literature values¹². Evidently the mean apparent molal volume of aqueous NH₄X - glucose solutions (X = Cl, Br, NO₃) increases with increasing concentration of glucose. This indicates that strong ion-solvent interaction occurs in these solutions. #### REFERENCES - 1. H.S. Harned and R.A. Robinson, The International Encyclopaedia of Physical Chemistry and Chemical Physics, Vol. 2, Pergamon Press, London (1968). - 2. R.A. Robinson and R.H. Stokes, Electrolytic Solutions, Butterworth & Co., London (1970). - 3. P. Padova in: R.A. Horne (Ed.), Water and Aqueous Solutions: Structure, Thermodynamics and Transport Properties, Wiley-Interscience, New York (1972). - 4. F.J. Millero, Chem. Rev., 71, 146 (1971). - 5. L.A. Woolf, J. Phys. Chem., 67, 273 (1963). - 6. W.Y. Wen and K. Nara, J. Phys. Chem., 71, 3907 (1967); 72, 1137 (1968). - 7. W.Y. Wen, K. Nara and R.H. Wood, J. Phys. Chem., 72, 3048 (1968). - 8. T.H. Lilley, Trans. Faraday Soc., 64, 2947 (1968). - 9. W.C. Wu, J. Phys. Chem., 74, 3781 (1970). OFF ON HE - 10. T.F. Young and M.B. Smith, J. Phys. Chem., 58, 716 (1954); T.F. Young, Rec. Chem. Progr., 12, 81 (1951). - 11. G.S. Upadhyay, R. Singh, A.K. Singh, H. Singh and P.K. Upadhyay, Asian J. Chem., 3, 373 (1991). - 12. R.L. Blokhra, S.K. Agarwal and N. Sakhuja, Electrochim. Acta, 22, 1083 (1977). | (Received: | 4 February 2005; | Accepted: 15 November 2005) | AJC-4508 | |------------|------------------|-----------------------------|----------| | | | | |